首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 157 毫秒
1.
 采用0.13μm CMOS工艺设计并实现了一个开关电容2阶ΔΣ调制器.该调制器能够将一个中心频率为455 kHz,带宽为10kHz的调幅信号转换成具有10位分辨率、信噪比为62dB的1位编码信号.在设计运算放大器时,充分考虑了短沟道晶体管设计的一些特殊要求,特别是考虑了MOS场效应管的输出电导gd这个非常敏感的设计参数.所设计电路的芯片的面积为260μm×370μm,工作电压为1.2 V.与其它的同类调制器相比,由于采用0.13μm CMOS工艺进行设计,因而芯片面积小,工作电压低.  相似文献   

2.
设计一个内部采用4位量化器的二阶单环多位sigma-delta调制器。为解决反馈回路中多位DAC元件失配导致的信号谐波失真问题,该sigma-delta调制器采用CLA(Clocked averaging algorithm)技术提高多位DAC的线性度,同时采用动态频率补偿技术增加积分器的稳定性。调制器信号频率带宽为24kHz,过采样率(OSR)为128,采用尺寸为0.5μm的CMOS工艺,工作电压为5V。测试结果表明:在输入信号频率为20kHz时,信噪比(SNR)达103dB,调制器输出信号无杂波动态范围为102dB;整个调制器功耗为87mW,芯片总面积为2.56mm2。  相似文献   

3.
设计了一个应用于0.9 V电源电压,精度达16 bit,功耗仅为300μW的音频ΣΔ调制器.调制器采用了前馈单环三阶结构,以降低整个调制器的功耗;并采用时钟自举电路以实现低电压下CMOS开关的良好导通.芯片采用SMIC 0.18μm一层多晶六层金属工艺进行设计和仿真,芯片核心部分面积为0.7 mm×0.66 mm.后仿真结果显示该调制器在20 kHz的音频信号带宽范围内信噪比可达93 dB.  相似文献   

4.
低功耗33MHz采样频率,10比特流水线结构的模数转换器   总被引:4,自引:0,他引:4  
介绍了一个 33MHz,10bit,3 3V流水线结构的模数转换器 (ADC) .该ADC采用了一种带预放大级的运算放大器和一种动态比较器来降低功耗 ;采用了电荷泵电路来提升时钟信号的电压 ;采用了一个恒跨导偏置电路 .本芯片在 0 35 μmCMOS工艺上实现 ,芯片面积为 1 2× 0 .4mm2 .芯片工作在 33MHz时功耗为 6 9 4mW ,采样 16MHz正弦信号时的信噪比 (SNDR)为 5 8 4dB .  相似文献   

5.
一种高速低相位噪声锁相环的设计   总被引:1,自引:0,他引:1  
设计了一种1.8V、SMIC0.18μm工艺的低噪声高速锁相环电路.通过采用环行压控振荡器,节省了芯片面积和成本.通过采用差分对输入形式的延时单元,很好地抑制了电源噪声.与传统的简单差分对反相器延时单元相比,该结构通过采用钳位管和正反馈管,实现了输出节点电位的快速转变,整个电路芯片测试结果表明:在输入参考频率为20MHz、电荷泵电流为40μA、带宽为100kHz时,该锁相环可稳定输出频率为7971MHz—1.272GHz的时钟信号,且在中心频率500kHz频编处相位噪声可减小至-94.3dBc/Hz。  相似文献   

6.
介绍了一种应用于小数分频频率合成器的Σ-Δ调制器的设计,该调制器采用三阶级联的MASH1-1-1结构,并利用流水线技术,提高了调制器的工作频率.电路设计采用Verilog HDL硬件描述语言实现,基于QuartusⅡ工具进行测试验证,结果表明,调制器最高工作频率为240.56MHz.最终采用SMIC 0.18μm CMOS工艺,完成了电路版图设计.芯片面积为34 148.5μm2,芯片总功耗为1.284mW,与传统设计相比,面积降低了31.23%,功耗降低了46.14%.  相似文献   

7.
分析了利用深亚微米CMOS工艺进行了射频集成电路设计的方法,在此基础上设计出了采用标准0.35μmCMOS工艺的输出频率在1.9GHz的上变频器,它可以用在WCDMA发射/接收机中,整个设计利用SPICE软件和HP ADS软件进行电路和系统模拟模拟,模拟结果:三阶互调ⅢP为10dBm,转换增益大于10dB,。已经利用Cadence工具进行版图设计和验证,最后通过美国MOSIS工程流片,芯片面积大约为0.6mm^2,目前初步的性能测试已经完成,芯片混频效果良好,在单电源+3.3V供电情况下,功耗小60mW,进一步的测试将在近期完成。  相似文献   

8.
分析了一个应用于测量的16位精度开关电容Δ-Σ模数调制器.该调制器采用3阶1位单环包含局部谐振器的前馈结构,在保证其具有较大的输入信号允许范围的同时引入零点优化来提高信号/噪声失真比.整体电路使用TSMC 0.35μm混合信号CMOS工艺,采用Spectre进行仿真.结果表明,在信号输入带宽为1 kHz、超采样率128条件下,调制器的动态输入范围为102 dB;在信号为-3.5 dB满幅输入时,其最大信号/噪声失真比为97.84 dB.此外,在1.5 V供电电压下,调制器的功耗仅为88μW,表现出较好的低功耗高精度性能.  相似文献   

9.
针对传统级联型ΔΣ调制器中运算放大器(OTA)增益要求过高和功耗过大的问题,提出了一种用反相器实现积分的级间反馈级联型低压低功耗调制器。该调制器采用带有级间反馈的级联型结构,从系统上消除了传统级联结构中传递函数失配的风险,大大降低了模拟积分器的设计要求,不再需要高电源电压、高增益的OTA实现积分来保证传递函数的精确性。此外,采用低增益、低功耗的C类反相器实现积分功能,节约了芯片功耗和面积,用0.5μm互补型金属氧化物半导体(CMOS)工艺设计了一个两级级联的四阶ΔΣ调制器,仿真结果表明,所设计的调制器版图核心面积仅为858μm×525μm,调制器可工作在低至1.4V的电源电压下,在信号带宽为3.9kHz、过采样率为128的情况下,信噪失真比(SNDR)最大为99.8dB,平均电流消耗仅为58.6μA。该调制器适用于低频信号的高精度处理,具有低压低功耗优势。  相似文献   

10.
一种双采样38-μ W92-dB8-kHz带宽ΣΔ调制器   总被引:1,自引:1,他引:0  
提出了一种应用于助听器的单环3阶开关电容ΣΔ调制器,采用双采样技术通过提高过采样率来改善调制器的性能,详细分析了双采样中电容失配的影响.为进一步降低功耗,OTA采用了class-AB结构,并对后级的运放进行了缩放.采用栅压自举技术消除了低压下CMOS开关的开通电阻由于栅源电压变化而引起的非线性问题.整个调制器过采样率128.后仿结果表明,在SMIC 0.13μm CMOS MIX Signal工艺下,输入信号为2 kHz时该调制器在8 kHz信号带宽内,达到了92 dB的信噪失真比.在1 V电源电压下功耗仅为38μW.核心版图面积为0.25 mm2.  相似文献   

11.
使用TSMC0.18μmCMOS工艺实现3.1~8.0GHz超宽带接收机前端电路芯片设计,并利用ADS软件进行仿真、电路参数调整。电路架构包括:单端输入差动输出之超宽带低噪声放大器、Balun(Balance-unbalance)以及差动输入/输出的超宽带降频混频器,主要特点是在低噪声放大器输出端和混频器之间加入Balun,提升电路性能并减少芯片面积。芯片测试结果:在供给电压1.8V下,频宽为3.1~8.0GHz,S11〈-15。3dB,转换增益为24.6dB,功率消耗为37.98mW;包台接脚,芯片面积0.985(0.897×1.098)mm2。  相似文献   

12.
设计了一种应用于数字电源控制器的模数转换器,和传统的模数转换器不同,该模数转换器采用两步转换的结构,功耗低,面积小.通过模数转换器与数字脉宽调制器共用延迟锁定环,面积和功耗进一步降低;通过在斜波信号发生器中使用电流舵技术,提高了斜波信号发生器的线性度;通过数字逻辑的优化设计,解决了时间数字转换中两步量化同步和匹配的问题.该模数转换器采样频率为1MS/s,目标有效位为8bit.芯片在SMIC0.13μm CMOS工艺下流片,功耗为60μW,面积为0.03mm2,有效位达到6.5bit.  相似文献   

13.
给出了6bit分辨率、10bit精度的千兆以太网卡芯片数模转换电路,包括体系结构设计、电路设计与仿真、版图设计.该数模转换电路经过TSMC 0.13μm 1P8M CMOS工艺验证,工作电压为1.5V/2.7V.芯片测试结果表明该数模转换电路能够满足千兆以太网卡芯片的性能要求.  相似文献   

14.
研究了万兆以太网接收芯片结构 ,并在此基础上设计、流片和测试了高速 1∶4分接芯片 ,采用 0 .1 8μmCMOS工艺设计的1∶4分接电路 ,实现了满足 1 0GBASE R的 1 0 .31 2 5Gbit/s数据的 1∶4串 /并转换 ,芯片面积 1 1 0 0 μm× 80 0 μm ,在输入单端摆幅为 80 0mV ,输出负载 5 0Ω条件下 ,输出2 .5 78Gbit/s数据信号电压峰峰值为 2 2 8mV ,抖动为 4psRMS ,眼图的占空比为 5 5 .9% ,上升沿时间为 5 8ps .在电源为 1 .8V时 ,功耗为 5 0 0mW .电路最高可实现 1 3.5Gbit/s的 4路分接  相似文献   

15.
针对应用于音频设备中的∑-ΔADC,提出一款改进的∑-ΔADC调制器.该调制器结构改进传统调制器的结构并对调制器系数进行优化,克服传统∑-ΔADC调制器结构的缺点,同时对调制器中的两个关键电路即OTA放大器和比较器也进行优化,极大改善了OTA放大器和比较器性能.改进后的调制器具有低电压、低功耗、高精度和较好的鲁棒性的特点.该调制器采用1.2 V低电压供电,过采样比(OSR)为128,采样频率为6.144 MHz,信号带宽为20 kHz.基于SMIC0.11μm的工艺下,完成了∑-ΔADC调制器的版图设计,并最终流片成功.芯片流片后的成测结果表明,调制器的信噪比达到102.4 dB,有效位达到16.7 bit,调制器的整体功耗仅1.17 mW左右,整个调制器的版图的面积仅为0.122 mm2左右.调制器的成测性能指标表明,该调制器是音频芯片中∑-ΔADC电路的良好选择.  相似文献   

16.
设计了一种应用于助听器的4阶连续时间单环单比特量化ΣΔ调制器.采用有源RC积分器实现连续时间前馈环路滤波.通过采用2级AB类放大器同时实现了低电压下积分器的低功耗和大电压输出摆幅.提出了用固定延时锁存比较结果的方法,消除了由量化器的信号相关延时带来的负面影响.调制器采用中芯国际0.13μm工艺,通过仿真显示,在20kHz信号带宽和128倍过采样率条件下,调制器的信号噪声失真比可以达到105.5dB.在1V电源电压下,调制器功耗仅为110μW.  相似文献   

17.
基于TSMC 0.18 μm工艺实现了一款适用于射频收发机的全集成小数分频频率合成器. 设计中采用了三阶MASH结构Σ-Δ调制器以消除小数杂散,为节省芯片面积使用了环形振荡器,同时在电路设计中充分考虑了各种非理想因素以提高频谱纯净度和降低芯片功耗. 仿真结果表明,该频率合成器可以在900 MHz~1.4 GHz的频率范围内产生间隔为25 kHz的输出信号. 在1.2 GHz输出时,偏离载波频率1 MHz处的相位噪声可以达到-106 dBc/Hz, 锁定时间小于10 μs.   相似文献   

18.
采用0.11μm 1P6M CMOS工艺设计与研究了一款适用于蓝牙极性调制发射机的两点调制锁相环.为了校正锁相环中两个相位调制路径的环路增益,降低采用该锁相环的发射机的频移键控误差,提出了一种新型的增益校正方法,并基于该方法设计了低相位噪声、低锁定时间的两点调制锁相环电路.芯片的测试结果表明,当压控振荡器震荡在4.8 GHz时,该锁相环在偏离4.8 GHz 10 kHz、1 MHz和3 MHz时的相位噪声依次为-83、-108和-114 dBc/Hz,采用该锁相环的极性调制发射机发射0 dBm信号时频移键控误差为2.97%,该锁相环的芯片面积为0.32 mm~2,整体性能满足蓝牙射频芯片测试规范要求.  相似文献   

19.
给出了一个利用 0 35 μmCMOS工艺实现的 1∶4静态分频器设计方法。该分频器采用源极耦合场效应管逻辑电路 ,基本结构与T触发器相同。测试结果表明 ,当电源电压为 3 3V、输入信号峰峰值为 0 5V时 ,芯片可以工作在 3 75GHz,功耗为 78mW。  相似文献   

20.
根据现代通信越来越高的传输速率和宽带要求,设计了一个可用于超宽带系统的无修正2GS/s,6 bit数模转换器.该转换器采用4+2的分段译码电流舵结构,其中高4位采用温度计码,低2位采用二进制码.在对关键单元电路进行了设计和分析之后,在中芯国际0.18 μmCMOS工艺下完成电路的版图设计和流片,芯片面积为975 μm×775 μm.对芯片进行的键合测试表明,其微分非线性为0.11 LSB,积分非线性为0.25 LSB;当采样时钟频率为2 GHz,输入信号频率为13.3 MHz时,无杂散动态范围为52.1 dB,功耗为79 mW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号