首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
研究假性紫罗兰酮在浓硫酸中环化制备β-紫罗兰酮的工艺条件。反应介质为脂肪烃或氯代脂肪烃和低级醇的混合物。β-紫罗兰酮的摩尔得率83%以上,产品中紫罗兰酮的总含量>98%,β-紫罗兰回含量>95%。  相似文献   

2.
β-紫罗兰酮合成研究   总被引:1,自引:0,他引:1  
改进了β-紫罗兰酮的合成方法,并研究影响反应产率诸因素.结果表明:在适当条件下,β-紫罗兰酮总收率可达52%.  相似文献   

3.
本文介绍了合成α-和β-紫罗兰酮的原理和改进方法。该法与传统的合成方法在反应温度、碱液浓度、催化剂等各方面都作了系列比较和筛选,尤其是环化过程采用特殊溶剂A与B,可使两种紫罗兰酮在纯度、产率方面都有显著的提高。  相似文献   

4.
采用GC-MS方法分析反应产物,对氯酸钠氧化β-紫罗兰酮的反应工艺进行研究,并探讨温度、时间、反应物配比和溶液的pH值对反应的影响。反应产物的结构采用红外光谱、质谱、氢核磁共振谱和元素分析等手段表征。研究结果表明:氯酸钠氧化β-紫罗兰酮的反应主要生成4-氧代-β-紫罗兰酮和5,6-环氧-β-紫罗兰酮,经重结晶和硅胶柱层析分离,纯度高于98%;4-氧代-β-紫罗兰酮的有利合成条件是反应温度为45℃,反应时间为24h,溶液的pH值为1~3,反应物配比n(β-ionone):n(NaClO3):n(NaI)为20:100:3,最佳收率为53.5%;5,6-环氧-β-紫罗兰酮有利的合成条件是反应温度为40℃,反应时间为24h,溶液的pH值为3,反应物配比n(pionone):n(NaClO3):n(NaI)为20:120:5,其收率为25.4%;未反应的β-紫罗兰酮经减压蒸馏回收后可重复使用。  相似文献   

5.
超声辐射选择性还原β-紫罗兰酮工艺   总被引:1,自引:0,他引:1  
采用质量分数为10%的Pd/C作催化剂,甲酸铵为氢给予体,乙醇作溶剂,研究超声波辐射下选择性还原β-紫罗兰酮的反应,考察辐射功率、反应时间、反应温度、Pd/C及甲酸铵用量对反应的影响并优化反应工艺。产物的结构经红外光谱、核磁共振谱、质谱及元素分析等表征。研究结果表明:在超声波辐射下,Pd/C催化甲酸铵还原β-紫罗兰酮主要生成二氢-β-紫罗兰酮和二氢-β-紫罗兰醇;在β-紫罗兰酮与10%Pd/C的质量比为100-5,β-紫罗兰酮与甲酸铵物质的量比为1-3,乙醇50 mL,超声功率150 W,于常压、温度为50℃时反应8 min,β-紫罗兰酮的转化率为100%,二氢-β-紫罗兰酮的收率为94.8%。Pd/C易分离回收,可重复使用6次以上。  相似文献   

6.
对α-紫罗兰酮合成的环化剂和溶剂进行了筛选.对合成的工艺条件(环化剂与溶剂的用量、反应时间、反应温度)进行了优化,在优化工艺条件下,紫罗兰酮的得率可达80%以上,α-紫罗兰酮的相对含量为80%左右.  相似文献   

7.
利用山苍子油制备α—紫罗兰酮和β-紫罗兰酮,采取分组对比设计进行了条件优化试验,得到合适的反应条件。用氢氧化钠作缩合剂,合成3h,假紫罗兰酮产率达到87%,在环化反应中直接以未经真空分馏的假紫罗兰酮粗品为原料,在常压和0—5℃在60%的硫酸中,反应0.5h,α—紫罗兰酮产率可达67%,β—紫罗兰酮达到70%。  相似文献   

8.
报道了用化学法从生产β-紫罗兰酮的精留副产物(馏份Ⅱ)中分离回收β紫罗兰酮的方法。考察了物料配比、温度、pH值等因素对β紫罗兰酮回收率和纯度的影响。在确定的反应条件下得到了的β紫罗兰酮粗品,经减压分馏可得到纯度ω(β-ionone)>97.0%的产品,分离回收率>90.0%,从而降低了生产成本。产品经紫外、红外、质谱鉴定,证明了方法的可靠性。  相似文献   

9.
采用在线热裂解-气相色谱/质谱(Py-GC/MS)联用技术研究了在氦气氛围中β-紫罗兰酮在300、400、500、600、700、800℃下的热裂解行为,结果表明:①β-紫罗兰酮可以裂解生成48种物质;②在600℃以下只有10.765%的β-紫罗兰酮发生裂解;在700、800℃裂解加剧,有18.149%和21.286%的β-紫罗兰酮发生裂解;③同时随着裂解温度的升高,形成的危害性芳香烃类化合物的相对含量也逐渐增大。此外,根据主要裂解产物对β-紫罗兰酮的裂解机理进行了初步探讨。  相似文献   

10.
<正> 0 前言β-紫罗兰酮是一种重要的花香型香料,同时也是合成我国目前还比较缺乏的维生素A的重要原料。目前,β-紫罗兰酮的合成途径较多,我国较普遍采用的是半合成法,因为半合成法与其它方法相比较,成本较低。半合成法的主要原料是山苍子油或经过提纯的柠檬醛。其过程如下:由柠檬醛在碱性条件下缩合成假性紫罗兰酮;假性紫罗兰酮在酸性条件下,环化成为β-紫罗兰酮,目前普遍采用的半合成法转化率偏低,总收率在43%~45%之间。第一步缩合反应收率在65%~77%。为了进一步降低β-紫罗兰酮的成本,以尽可能提高其总收率,本文介绍采用一种自制的水溶性催化剂,可使山苍子油合成假性紫罗兰酮的收率达到86%。  相似文献   

11.
本文介绍了合成β—紫罗兰酮的改进方法,该方法使得反应周期大大缩短,在环化过程中采用特殊溶剂M,将使β—紫罗兰酮的收率显著提高。  相似文献   

12.
以氯乙稀和金属镁为原料,反应制得格氏试剂乙稀基氯化镁;再与β-紫罗兰酮发生加成反应得到合成维生素A的重要中间体乙稀基-β-紫罗兰醇。通过对反应条件和工艺的研究 和优化,确定了最佳工艺条件为:金属镁与β-紫罗兰酮的摩尔比为1. 3: 1 .0,滴加β-紫罗兰酮的温度为0~5 ℃,在反应温度20~25 ℃时继续反应3~4 h,得到乙稀基-β-紫罗兰醇的收率为98.0%,气相色谱(GC)分析含量为92 . 5%。该工艺条件得到了实验室放大的验证。  相似文献   

13.
假性紫罗兰酮合成新工艺(Ⅰ)   总被引:1,自引:0,他引:1       下载免费PDF全文
本文研究以AL-01为催化剂由柠檬醛与丙酮合成假性紫罗兰酮的工艺条件(催化剂和溶剂的用量、反应时间和温度)、柠檬醛纯度的影响,以及催化剂寿命与再生.新工艺使假性紫罗兰酮得率提高到85%以上。  相似文献   

14.
采用高效液相色谱-气相色谱-质谱联用法(HPLC-GC-MS)测定中部和下部烟叶的巨豆三烯酮、β-紫罗兰酮、氧化紫罗兰酮、茄酮等11种致香成分,应用遗传算法(GA)对筛选出的8种致香成分建立中部和下部烟叶支持向量机(SVM)分类判别模型.结果表明,中部和下部烟叶的SVM分类判别模型的建模、留一法及预报准确率分别为95.45%,89.39%和81.25%.利用Fisher判别矢量方法考察了中部和下部烟叶的空间分布规律,分析出中部和下部烟叶致香成分中,巨豆三烯酮、β-紫罗兰酮、氧化紫罗兰酮差异显著.  相似文献   

15.
紫罗兰酮的合成   总被引:2,自引:0,他引:2  
本文对紫罗兰酮[α─紫罗兰酮:β─紫罗兰酮]的合成从多方面进行了实验探讨,获得了较理想的结果。  相似文献   

16.
采用固相微萃取(SPME)-气相色谱/质谱(GC/MS)联用技术分析大野芋花的挥发性成分,共鉴定出12种挥发性化合物,其中含量较高的是2-异丙基-5-甲基茴香醚(46.88%),二氢-β-紫罗兰酮(39.80%),苯甲酸甲酯(6.61%),以上三种占鉴定总成分的93.29%.其中10种主要挥发性物质有香味,按花味分类,4-蒈烯、二氢-β-紫罗兰酮、4-(2,6,6-三甲基-环己烯-1-乙基)-2-丁醇、β-紫罗兰酮属紫罗兰花型;苯甲酸甲酯、1,2-二甲氧基苯、水杨酸甲酯、4-羟基-3-甲基苯乙酮(或称香草酮)、2-异丙基-5-甲基茴香醚、肉桂酸甲酯属芳香花型.可见,大野芋可作为良好的香料植物开发利用.  相似文献   

17.
一水硫酸氢钠在有机合成中的应用   总被引:1,自引:0,他引:1  
硫酸氢钠是有机合成中能够代替硫酸的一种好的固体酸催化剂.介绍了一水硫酸氢钠在合成环已烯、二氧六环、β-萘甲醚、β-萘乙醚、酯、缩醛(酮)、蔗糖水解和紫罗兰酮合成中的应用.  相似文献   

18.
以3β-取代5-甾烯-17-酮与碳酸二甲酯经Claisen综合,所得产物再分别与肼或羟胺反应,设计合成了几种3β-取代5-甾烯并-1-取代[17,6-C]吡唑啉-5-酮和3β-取代5-甾烯并[17,16-C]异恶唑啉-5-酮,其结构经元素分析、IR、^1H NMR和^13C NMR确证。  相似文献   

19.
以碳酸钾为碱,β-二酮或β-酮酯和二硫化碳、溴乙醇反应,用简单的方法合成了标题化合物。  相似文献   

20.
运用波谱及GC—MS等方法从海绵中分离鉴定出十四酸,十六酸,24-甲基胆甾醇,胆甾-5-烯-3β-醇,胆甾-5,22-二烯-3β-醇,胆甾-3,5-二烯-7-酮,麦角甾-5-烯-3β-醇,(24-S)-豆甾-5-烯-3β-醇,胆甾-5α-3,6-二酮  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号