首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用GC-MS方法分析反应产物,对氯酸钠氧化β-紫罗兰酮的反应工艺进行研究,并探讨温度、时间、反应物配比和溶液的pH值对反应的影响。反应产物的结构采用红外光谱、质谱、氢核磁共振谱和元素分析等手段表征。研究结果表明:氯酸钠氧化β-紫罗兰酮的反应主要生成4-氧代-β-紫罗兰酮和5,6-环氧-β-紫罗兰酮,经重结晶和硅胶柱层析分离,纯度高于98%;4-氧代-β-紫罗兰酮的有利合成条件是反应温度为45℃,反应时间为24h,溶液的pH值为1~3,反应物配比n(β-ionone):n(NaClO3):n(NaI)为20:100:3,最佳收率为53.5%;5,6-环氧-β-紫罗兰酮有利的合成条件是反应温度为40℃,反应时间为24h,溶液的pH值为3,反应物配比n(pionone):n(NaClO3):n(NaI)为20:120:5,其收率为25.4%;未反应的β-紫罗兰酮经减压蒸馏回收后可重复使用。  相似文献   

2.
以氯乙稀和金属镁为原料,反应制得格氏试剂乙稀基氯化镁;再与β-紫罗兰酮发生加成反应得到合成维生素A的重要中间体乙稀基-β-紫罗兰醇。通过对反应条件和工艺的研究 和优化,确定了最佳工艺条件为:金属镁与β-紫罗兰酮的摩尔比为1. 3: 1 .0,滴加β-紫罗兰酮的温度为0~5 ℃,在反应温度20~25 ℃时继续反应3~4 h,得到乙稀基-β-紫罗兰醇的收率为98.0%,气相色谱(GC)分析含量为92 . 5%。该工艺条件得到了实验室放大的验证。  相似文献   

3.
利用山苍子油制备α—紫罗兰酮和β-紫罗兰酮,采取分组对比设计进行了条件优化试验,得到合适的反应条件。用氢氧化钠作缩合剂,合成3h,假紫罗兰酮产率达到87%,在环化反应中直接以未经真空分馏的假紫罗兰酮粗品为原料,在常压和0—5℃在60%的硫酸中,反应0.5h,α—紫罗兰酮产率可达67%,β—紫罗兰酮达到70%。  相似文献   

4.
应用Baeyer-Villiger氧化反应,通过"一锅煮"的方法,以β-紫罗兰酮为原料,H2O2(30%)作氧化剂,经Lewis酸催化,合成β-环高柠檬醛.通过单因素实验法,详细研究了溶剂、催化剂、氧化剂、反应时间以及反应温度对β-环高柠檬醛合成反应的影响.确定了最佳反应条件,产率35%,产物结构通过GC-MS和NMR鉴定.  相似文献   

5.
本文以固体强酸TiO2/SO42-作催化剂,苯/三氯甲烷(2:1)作溶剂,研究了假性紫罗兰酮环化合成紫罗兰酮的反应.探索了反应温度、反应时间、催化剂用量和溶剂用量等因素对反应结果的影响.最佳合成条件:5.6mL假性紫罗兰酮,催化剂用量为2.1g,溶剂用量为8mL,环化反应温度为20℃,反应时间为2.0h,在此条件下所得紫罗兰酮的产率约为77%~78%左右,高于文献值70.4%.  相似文献   

6.
采用在线热裂解-气相色谱/质谱(Py-GC/MS)联用技术研究了在氦气氛围中β-紫罗兰酮在300、400、500、600、700、800℃下的热裂解行为,结果表明:①β-紫罗兰酮可以裂解生成48种物质;②在600℃以下只有10.765%的β-紫罗兰酮发生裂解;在700、800℃裂解加剧,有18.149%和21.286%的β-紫罗兰酮发生裂解;③同时随着裂解温度的升高,形成的危害性芳香烃类化合物的相对含量也逐渐增大。此外,根据主要裂解产物对β-紫罗兰酮的裂解机理进行了初步探讨。  相似文献   

7.
以β -紫罗兰酮为原料 ,通过氧化和还原两步反应合成了 4-氧代 - β -紫罗兰醇。该产物通过了气相色谱—质谱联用仪的检测 ,且其产率比文献值高出 1 6 5%。  相似文献   

8.
以空气为氧化剂,在温和的条件下,研究三氧化铝负载下催化氧化3-氧代-α-紫罗兰酮合成1-羟基-4-氧代-α-紫罗兰酮的反应,考察制备过程中反应温度、反应时间、空气湿度、Al2O3用量和Al2O3酸碱性等对反应的影响。反应产物用CHCl3-CH3OH混合溶剂进行洗涤与催化剂分离,目标产物结构经GC-MS和1HNMR等测试技术进行表征。研究结果表明:在此催化体系中,室温条件下,以粒度为37.5~75.0μm的中性或碱性Al2O3为载体,氧化铝和反应底物的质量比为10:1,通入未经干燥的空气充分反应20 h后,3-氧代-α-紫罗兰酮转化率可到100%,目标化合物1-羟基-4-氧代-α-紫罗兰酮收率达85%;催化剂循环使用重复性良好。  相似文献   

9.
报道了用化学法从生产β-紫罗兰酮的精留副产物(馏份Ⅱ)中分离回收β紫罗兰酮的方法。考察了物料配比、温度、pH值等因素对β紫罗兰酮回收率和纯度的影响。在确定的反应条件下得到了的β紫罗兰酮粗品,经减压分馏可得到纯度ω(β-ionone)>97.0%的产品,分离回收率>90.0%,从而降低了生产成本。产品经紫外、红外、质谱鉴定,证明了方法的可靠性。  相似文献   

10.
本文介绍了合成α-和β-紫罗兰酮的原理和改进方法。该法与传统的合成方法在反应温度、碱液浓度、催化剂等各方面都作了系列比较和筛选,尤其是环化过程采用特殊溶剂A与B,可使两种紫罗兰酮在纯度、产率方面都有显著的提高。  相似文献   

11.
以α-紫罗兰酮为原料,用叔丁基过氧化氢(TBHP)和次氯酸钠进行环上稀丙位氧化生成羧基,再用硼氢化钠选择性还原羧基,当n(3-氧代-紫罗兰酮):n(NaBH4)为3.28 :1.00,反应温度为0?5℃,反应时间为30 min时,只生成中间体3 -氧代-α-紫罗兰醇。3- 氧代-α-紫罗兰醇再用氯曱酸乙酯进行酯化,得到3 -氧代-α-紫罗兰醇碳酸乙酯,总产率为27%。所有中间体和产物的结构经IR、1HNMR、13CNMR和MS证实。  相似文献   

12.
通过不同的实验条件合成假性紫罗兰酮,探讨了催化剂种类、催化剂用量、反应物配比、反应温度和反应时间等因素对反应产率的影响;通过实验得到提高合成假性紫罗兰酮收率的最佳反应条件为:以氢氧化钠或氢氧化钾为催化剂,催化剂为原料质量的2%,反应原料的摩尔比为1∶6.1,反应温度为62 ℃,反应时间为3 h;并对所得产物进行了纯化,分离收率为79.69%;该结果对合成假性紫罗兰酮的工业开发具有实用价值.  相似文献   

13.
通过不同的实验条件合成假性紫罗兰酮,探讨了催化剂种类、催化剂用量、反应物配比、反应温度和反应时间等因素对反应产率的影响;通过实验得到提高合成假性紫罗兰酮收率的最佳反应条件为:以氢氧化钠或氢氧化钾为催化剂,催化剂为原料质量的2%,反应原料的摩尔比为1∶6.1,反应温度为62℃,反应时间为3 h;并对所得产物进行了纯化,分离收率为79.69%;该结果对合成假性紫罗兰酮的工业开发具有实用价值。  相似文献   

14.
对α-紫罗兰酮合成的环化剂和溶剂进行了筛选.对合成的工艺条件(环化剂与溶剂的用量、反应时间、反应温度)进行了优化,在优化工艺条件下,紫罗兰酮的得率可达80%以上,α-紫罗兰酮的相对含量为80%左右.  相似文献   

15.
采用GC-MS气质联用仪、HP-5MS毛细色谱柱和SIM扫描,对紫罗兰酮进行分析.在选定的气相色谱-质谱条件下紫罗兰酮检出限为0.1 μg/g,线性范围为0.5-100 μg/g,方法的回收率为89.2%-93.2%,RSD为5.6%-14.1%(n=6).该方法准确度和灵敏度高,样品用量少,前处理简单,可满足生产企业测定紫罗兰酮含量的要求.  相似文献   

16.
本文介绍了合成β—紫罗兰酮的改进方法,该方法使得反应周期大大缩短,在环化过程中采用特殊溶剂M,将使β—紫罗兰酮的收率显著提高。  相似文献   

17.
以醋酸去氢表雄酮为原料,经C17保护,C16溴代,C15和C16间脱溴化氢及C17脱保护4步反应法合成了3β-乙酰氧基雄甾-5,15-二烯-17-酮.探讨了影响缩酮化反应、溴代反应、消除反应及去保护反应的主要因素,测试了各步产物的物理常数,并用高效液相色谱,红外光谱,质谱,氢核磁共振等对产物进行了表征.研究结果表明:缩酮化反应中催化剂对甲苯磺酸与甾体的量比为0.066时比较适宜,过量会产生油状物;溴代反应中,溴化试剂C5H5N·HBr·Br2的性能优于Br2的性能;溴代反应中间体偕二溴代物中,脱溴试剂NaI的性能优于KI的性能,KI的性能优于Zn粉的性能;消除反应中反应速度与叔丁醇钾的用量成正比,溶剂二甲亚砜优于二甲苯;升高温度不利于去保护反应的进行.上述4步反应的收率分别为93.4%,81.8%,88.8%和96.7%,总收率为65. 6%.  相似文献   

18.
3,8-二甲基-4,5,6,7-四氢莫-6-酮是由螺[1,3-二氧戊环-2,2′(6′H)-1′,3′,4′,7′,8′,8′a-六氢-5′,8′a-β-二甲基萘]-6一酮经脱氢,光重排,还原和脱水而制得的。反应产物的结构经红外光谱、氢核磁共振谱、质谱和元素分析得到了证明。  相似文献   

19.
采用GC-MS气质联用仪、HP-5MS毛细色谱柱和SIM扫描,对紫罗兰酮进行分析。在选定的气相色谱-质谱条件下紫罗兰酮检出限为0.1μg/g,线性范围为0.5—100μg/g,方法的回收率为89.2%-93.2%,RSD为5.6%-14.1%(n=6)。该方法准确度和灵敏度高,样品用量少,前处理简单,可满足生产企业测定紫罗兰酮含量的要求。  相似文献   

20.
无溶剂条件下SbCl3催化合成二氢嘧啶酮衍生物   总被引:1,自引:0,他引:1  
用SbCl3作催化剂, 无溶剂条件下合成了一系列二氢嘧啶酮衍生物,确定了反应的最佳条件为芳香醛、β-二羰基化合物和尿素的摩尔比为1∶1∶1.5,催化剂用量为芳香醛的10%,最佳温度为70℃。探讨了反应机理。此方法收率高、反应时间短、操作简便。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号