首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
本研究以N,N′-(2,2′-双(三氟甲基)联苯-4,4′-二基)双(1,3-二氧代-1,3-二氢异苯并呋喃-5-甲酰胺)(TATFMB)和4,4′-二氨基-2,2′-双(三氟甲基)联苯(TFMB)为单体制备聚酰胺酸(PAA)溶液,加入八(氨基苯基三氧硅烷)(OAPS)作为交联剂,通过热亚胺化得到了透明聚酰亚胺薄膜.差示扫描量热法(DSC)、动态热机械分析(DMA)和热失重分析(TGA)测定表明,多面体聚硅氧烷(POSS)结构的引入提升了材料的耐热性与热稳定性,同时赋予材料形状记忆性能.相比于以往报道的形状记忆聚酰亚胺,TATFMB/TFMB/OAPS聚酰亚胺薄膜具有高的玻璃化转变温度(tg).该薄膜具有良好的透明性(400~800nm平均光透过率92%,500nm处透过率91%).热机械分析(TMA)测试的结果表明,二酐单体TATFMB的引入使得聚合物具有较低的热膨胀系数(CTE).所制备的透明耐高温聚酰亚胺薄膜拓展了聚酰亚胺材料在光电显示器件与高温形状记忆材料领域的应用.  相似文献   

2.
合成具有独特结构的三蝶烯-2,3,6,7-四甲酸二酐,利用低温溶液缩聚-化学酰亚胺化法,分别与4,4'-二氨基二苯甲烷(DMA)、4,4’-二氨基二苯醚(ODA)合成两种结构新颖的聚酰亚胺.利用傅里叶变换红外光谱(FT-IR)、热失重分析(TGA)与示差扫描量热法(DSC)等手段对聚酰亚胺进行表征,研究其溶解性能、特性...  相似文献   

3.
采用亲核取代反应, 通过A2+B3方法制备含联苯结 构氟封端超支化聚醚醚酮(HPDEEK-F), 用4-苯乙炔苯酚与得到的氟封端聚合物反应, 制得苯乙炔封端的超支化聚醚醚酮(HPDEEK-PEP), 并研究了其结构和性能. 结果表明, 苯乙炔封端聚合物的玻璃化转变温度高于氟封端聚合物的玻璃化转变温度, 热稳定性好于氟封端聚合物, 两种聚合物在极性溶剂中都具有良好的溶解性.  相似文献   

4.
通过均苯四甲酸二酐(PMDA)分别与联苯二胺 (DABP)、3, 3’-二甲氧基联苯胺 (DMOB)和 3, 3’-二羟基-4, 4’-二氨基联苯(HAB)的缩合及相应聚酰胺酸的热环化失水酰亚胺化反应, 制备了联苯均酐型聚酰亚胺(PI).TGA和DSC研究表明,邻甲氧基和邻羟基使PI的开始分解温度和不同失重百分比的温度降低.其耐热性为DABP-PMDAPI>DMOB-PMDAPI>HAB-PMDAPI.发现DMOB-PMDAPI和HAB-PMDAPI的热行为相似,其热分解过程可能涉及重排成聚苯并噁唑(PBO)的类似反应.  相似文献   

5.
以4,4'-对苯二甲酰二邻苯二甲酸酐(TDPA)和间苯二胺(MPD)为单体,以邻苯二甲酸酐(PA)为封端剂,采用2步法经低温溶液缩聚合成了系列结构新颖的双酮酐型聚酰亚胺(TDPA-PI).采用FT-IR、WAXD、DSC和TGA测试对聚合物的结构与性能进行了表征.考查了封端剂用量及亚胺化方法对酮酐型聚酰亚胺性能的影响.FT-IR表明,2种方法均能使TDPA-PAA亚胺化.DSC和TGA分析表明封端剂可在一定程度上提高PI的热性能,化学亚胺化得到的树脂热性能优于热亚胺化.TDPA-PI属热塑性聚合物,Tg为280.6 ℃(高于Larc-I-TPI的259 ℃),具有较好的耐热性和耐溶剂性能.  相似文献   

6.
将二胺单体1,3 双(4 氨基苯氧基)苯(1,3,4-APB)、3,4 二氨基二苯醚(3,4-ODA)分别与3,3′,4,4′-联苯四酸二酐(s-BPDA)和1,4,5,8 萘四甲酸二酐(NTDA)进行缩聚反应,并在两种不同合成条件下合成三种苯乙炔苯酐(PEPA)封端的聚酰亚胺低聚(PI1、PI2、PI3)。结果表明,含六元酸酐环的NTDA与二胺反应不仅形成酰亚胺结构,而且还形成异酰亚胺结构,并且酸性条件下更有利于酰亚胺结构的形成。这三种以苯乙炔苯酐封端的低聚物均具有良好的加工性能和热性能,有很宽的加工窗口,5%热失重温度均5300℃以上。萘环的引入使低聚物固化前后的玻璃化转变温度均有所提高,但也使得低聚物黏度上升。  相似文献   

7.
为了考察分子结构对聚酰亚胺性能的影响,在4,4’-二氨基二苯醚-均苯四甲酸二酐(ODA-PMDA)型聚酰亚胺中引入具有不对称结构的单体3,4'-二氨基二苯醚(3,4'-ODA),制备共聚改性均苯型聚酰胺酸,经热亚胺化得到所需聚酰亚胺.分别用全反射红外光谱仪(FT-IR)、静态热机械分析仪(TMA)、同步热分析仪(TGA)和万能试验机对聚合物性能进行表征.结果表明:随着聚合物中不对称结构单体3,4’- ODA的引入,在保持聚合物优良的耐热性能的同时,溶解性能得到明显改善,玻璃化温度降至314℃,拉伸强度和拉伸模量分别降至91.33和1536 MPa,加工性能有所提高.  相似文献   

8.
以4,4'-二苯氧基二苯砜(DPODPS)和4,4'-联苯二甲酰氯(BPPC)为原料,采用亲电缩合反应制备了主链含联苯结构单元的聚芳醚砜醚酮酮(PESEKDK),并用红外(FT-IR)、广角X-射线衍射(WAXD)、示差扫描量热法(DSC)、热重法(TGA)等手段对其进行了表征.结果表明:PESEKDK的玻璃化转变温度(Tg)为207℃,在238℃、264℃、283℃处出现3个熔融峰;热分解温度(Td)为561℃,说明聚合物的耐热性能优良.以质量比为50%的T700短碳纤维和PESEKDK熔融共混制备的复合材料的拉伸强度为286 MPa,拉伸模量为30.9 GPa,表明复合材料具有优良的力学性能.  相似文献   

9.
通过弗里德尔—克拉夫茨反应制备了三种聚次芳基硫醚即聚次苯基硫醚、聚氧化二次苯基硫醚和聚氯代次苯基硫醚。经分析具有下列单元结构: 利用热机械曲线、X—射线衍射和核磁共振法测定其结晶性;由热失重分析表明它们具有较高的热稳定性:比容-温度关系测定其玻璃化温度;由冲击法测定这三种聚合物的磁导率均大于1,表明它们具有顺磁特性。  相似文献   

10.
以3-氯代苯酐和间苯二酚为初始原料,合成了3,3'-(间苯)二醚二酐(3,3'-Rs DPA).将其与3,3',4,4'-联苯四甲酸二酐(BPDA)以不同比例和4,4'-二氨基二苯醚(4,4'-ODA)发生缩聚反应,以邻苯二甲酸酐(PA)为封端剂,经化学亚胺化后,制备了一系列特性粘度控制在0.47~0.48 d L·g~(-1)的热塑性聚酰亚胺(TPI)模塑粉.采用傅里叶变换红外光谱(FT-IR)、热失重分析(TGA)、差式扫描量热仪(DSC)以及X-射线衍射(XRD)对聚酰亚胺模塑粉的结构和性能进行表征,同时考察了样品的机械性能.研究发现:当3,3'-Rs DPA与BPDA的摩尔比为6∶4时,共聚聚酰亚胺的性能较好,玻璃化转变温度(Tg)为252℃,熔融温度(Tm)为327℃,5%热失重温度(Td5%)为553℃,拉伸强度高达124 MPa,弯曲强度为175 MPa,XRD也表明该聚酰亚胺具有一定的结晶行为良好的耐热性、优异的机械性能及良好的加工性能使该聚酰亚胺材料可用于3D打印技术中.  相似文献   

11.
以9,9-双(3-氟-4-氨基苯基)芴和4,4 (六氟异丙烯)二酞酸酐为单体合成含芴聚酰亚胺(FFDA-6FDA), 并采用Fourier变换红外光谱(FT-IR)、 核磁共振氢谱(1H NMR)对其结构进行表征. 实验结果表明: FFDA-6FDA的结构与预期结果相同, 单体间酰亚胺化反应完全; 室温下FFDA-6FDA在多种常规有机溶剂中溶解性良好; FFDA-6FDA具有较高的热稳定性能, 其玻璃化转变温度为370 ℃, 氮气中10%热失重温度为582 ℃, 800 ℃的热残留率大于61%; FFDA-6FDA薄膜具有较好的光学透明性, 截断波长为294 nm.  相似文献   

12.
以微电子业所急需的聚酰亚胺薄膜为背景,采用一种热塑性聚酰亚胺树脂(TPI),实验测定了聚合物溶液特性、干燥工艺及热拉伸性能。在化学环化过程中聚合物溶液粘度随时间逐步增大;15 h后粘度和重均相对分子质量及分布趋于稳定。薄膜溶剂舍量在干燥初期急剧下降,干燥速率随干燥温度升高而增大。TPI树脂表现出良好的热塑拉伸性能,当温度高于其玻璃化温度时,最大拉伸比随升温速率降低而增大,而随拉伸栽荷增加呈现出先增后降。TPI薄膜经拉伸处理后其力学性能得到明显提高,综合性能与日本钟渊TP-E薄膜相当。  相似文献   

13.
采用Wittig-Horner反应合成了叔丁基苯咔唑衍生物。核磁共振氢谱、红外光谱、质谱和元素分析等表征手段对产物的化学结构进行了确认。利用紫外吸收光谱仪、荧光发射光谱仪、热重分析仪、示差扫描量热仪和电化学工作站对这些化合物的光物理性能、热性能和电化学性能进行了初步表征。实验结果表明:所合成的化合物无论在溶液状态还是固体状态均能发射强烈荧光;化合物具有较高的溶液荧光量子产率(77%~54%);它们的能隙较窄,约为2.9 eV;在紫外吸收光谱和荧光发射光谱上,化合物的最大吸收和发射波长与连接基团有明显的关系;合成的产物均具有非常高的热稳定性,热失重5%的温度(Td)超过470℃,玻璃化温度(Tg)超过220℃。所合成的化合物可望成为高性能发光材料应用于发光器件。  相似文献   

14.
以间苯二胺和均苯四甲酸二酐为单体经过一系列反应合成了两种含偶氮苯侧链的聚酰亚胺。实验中采用了两条合成路线:(1)通过化学亚胺化合成聚酰亚胺,再通过后偶氮偶合的方法将偶氮苯生色团引入到聚酰亚胺分子链,从而得到了带有偶氮苯侧链的聚酰亚胺;(2)先合成带有偶氮苯侧链的聚酰胺酸,再通过热亚胺化得到聚酰亚胺。文中对这两种路线得到的聚酰亚胺进行了特性粘度、红外光谱、核磁共振、差示扫描量热测试。结果表明这两种聚酰亚胺的结构基本一致,而路线(2)得到的聚酰亚胺的特性粘度和玻璃化转变温度均稍高于路线(1)得到的聚酰亚胺。  相似文献   

15.
以CBTDA为单体的脂环族聚酰亚胺的合成及其性能   总被引:3,自引:0,他引:3  
胡朝霞  印杰 《上海交通大学学报》2005,39(11):1821-1823,1832
通过Diels—Alder及[2+2]环加成反应,合成了1,2;3,4-环丁烷-对称(3,6-氧桥-1,2,3,6-四氢苯-1,2-二甲基甲酸酐)(CBTDA),然后与4,4’-二氨基-3,3’-二甲基二苯基甲烷(DADMDPM)、4,4’-二氨基二苯基醚(DADPE),通过化学亚胺化和热亚胺化法合成了两种脂环族聚酰亚胺.所合成的聚酰亚胺具有较好的溶解性,高的玻璃化转变温度(Ta〉290℃)及热稳定性(分解温度Td〉490℃),所合成的聚酰亚胺薄膜在可见光区域具有较高的透明性,介电系数在2.8~2.9.  相似文献   

16.
以4,4’-对苯二甲酰二邻苯二甲酸酐(TDPA)和1,3-双(4-氨基苯氧基)苯(BAPB)为单体,采用2步溶液缩聚法,制得高相对分子质量的聚酰胺酸(PAA)溶液,经4种亚胺化工艺合成了TDPA/BAPB型聚酰亚胺(PI)树脂.通过FT-IR、WAXD、DSC、TGA、溶解性能等对PI树脂进行测试和表征.FT-IR表明4种方法均形成了酰亚胺结构,WAXD及DSC分析表明TDPA/BAPB型PI为部分结晶型结构,熔融温度(Tm)为363~370 ℃,TGA测试揭示乙酸酐/吡啶化学亚胺化PI耐热性能最佳,且较其它3种方法溶解性也更好,可溶于DMSO、NMP、间甲酚等强极性溶剂中.PAA溶液流延成膜性能良好,热亚胺化PI薄膜具有较好的力学性能,拉伸强度为118.3 MPa,弹性模量为2.5 GPa.  相似文献   

17.
合成一种含哌嗪的芳香族二胺单体,将其用于聚酰亚胺的三元共聚中,并制成改性聚酰亚胺膜。表征此三元共聚产物。通过与不含此二胺单体的二元聚酰亚胺相比较,发现此三元共聚产物热性能优异,溶解性也有较大的提高,Tg有所下降,亚胺化温度也有所下降。  相似文献   

18.
以联苯二氯苄制备的对联苯二甲酰氯和1.6~已二醇为单体合成了热致型主链液晶高分子,并以此液晶高分子与对苯二甲酸乙二醇酯(PET)在少量扩链剂双2-恶唑啉(BOZ)存在下进行反应性共混.探讨了单体摩尔比、反应温度、催化剂等因素对液晶合成的影响.利用红外光谱对对联苯二甲酸和聚酯液晶进行了表征,用DSC对聚酯液晶进行了热分析.研究了对反应性共混条件对共混物热性能的影响.结果表明,BOZ对酯交换的促进作用使玻璃化温度(Tg)升高,延长共混时间和提高共混温度使冷结晶温度(Tcr)升高,溶体结晶温度(Tmc)和熔点(Tm)下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号