首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为改善聚酰亚胺薄膜的透明性和溶解性,通过Williamson醚化反应较高产率地合成出高纯度的2,2-双[4-(4-氨基-2-三氟甲基苯氧基)苯基]丙烷,该含氟二胺与3,3’,4,4’-联苯四酸二酐(BPDA)在溶剂中缩聚得到聚酰胺酸,热亚胺化得到玻璃化转变温度Tg为350.2℃、在氮气中10%热失重温度为539.8℃、紫外截止波长为390 nm的含氟透明聚酰亚胺,并合成了联苯二酐/二苯醚二胺薄膜BPDA-ODA,通过对两种薄膜热稳定性、透光率、溶解性能的比较发现,在聚酰亚胺分子结构中引入氟原子,在不改变其热稳定性的前提下,可明显改善聚酰亚胺的透明性和溶解性。  相似文献   

2.
为了提高聚酰亚胺的热塑性,制备兼具优异热塑性与耐热性的聚酰亚胺材料,以均苯四甲酸二酐(PMDA)与3,3′,4,4′-联苯四羧酸二酐(s-BPDA)为二酐、4,4′-二氨基二苯醚(ODA)与2,2′-二[4-(4-氨基苯氧基)苯基]丙烷(BAPP)为二胺,通过两步法成功制备了一系列四元共聚热塑性聚酰亚胺,并研究了刚性联苯基团与柔性单体、侧甲基的协同作用对聚酰亚胺材料性能的影响。利用FTIR、XRD、DMA和TGA等测试手段对材料的分子结构、热塑性和耐热性等进行了表征。结果表明:该系列四元共聚聚酰亚胺具有良好的热塑性与耐热性,其中当二酐与二胺的摩尔分数比(PMDA∶s-BPDA∶ODA∶BAPP)为70∶30∶70∶30时,该材料表现出优异的热塑性和耐热性,同时在非质子极性溶剂中表现出较好的溶解性,极大地提高了聚酰亚胺在溶剂或熔融状态下的加工性能。  相似文献   

3.
以双(4-氨基苯基)-9,10-二氢-9-氧杂-10-磷杂菲-10-磷酰基乙烷(ADOPPE)和2-(3-氨基苯基)-5-氨基苯并咪唑(i-DAPBI)为二胺原料,按一定物质的量比与4,4′-(六氟异丙烯)二酞酸酐(6-FDA)、3,3′,4,4′-联苯四羧酸二酐(BPDA)、3,3′,4,4′-二苯甲酮四甲酸二酐(BTDA)等3种不同二酐缩聚,成功得到几个不同系列的咪唑型含磷聚酰胺酸(PAAs),然后经热亚胺化制得对应的咪唑型含磷聚酰亚胺。通过FTIR对咪唑型含磷聚酰亚胺进行了结构表征;采用DSC、TGA和UV-Vis,溶解性测试、力学性能测试等分析数据比较了其综合性能。结果表明,合成的咪唑型含磷聚酰亚胺薄膜基本都具有优异的热性能、较高的透光性以及较好的力学性能。PI-a系列能很好地溶解在有机溶剂中。  相似文献   

4.
三元共聚型聚酰亚胺的合成   总被引:1,自引:0,他引:1  
提出了一种合成三元共聚型聚酰亚胺的方法,即用单体,均苯四甲酸二酐(PMDA)、3,3′,4,4′-二苯酮四甲酸二酐(mA)、4,4′-二氨基二苯醚(0DA),在溶剂N,N′-二甲基乙酰胺(DMAc)或N-甲基吡咯烷酮中,低温共缩聚制成三元共聚型聚酰亚胺,给出了合成工艺条件及配方,并对其性能等进行了测试,与其他聚酰亚胺进行了比较.该产品可用于制造耐高温绝缘薄膜、浸渍漆等.  相似文献   

5.
以3,3′,4,4′-二苯酮四酸二酐(BTDA)作为二酐单体,与2,2-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)和4-苯基-2,6-双(4-氨基苯基)吡啶(PBAP)通过常规的两步法,合成了可溶性共聚聚酰亚胺.利用IR、1H NMR、XRD、粘度测试、溶解性测试和TGA等手段对聚合物的结构和性能进行了研究.结果表明,所得聚酰亚胺的结晶度较低,PAA特性粘数为0.32~0.46dL/g,溶解性较好,并有着优良的热稳定性.  相似文献   

6.
采用50%发烟硫酸磺化对硝基甲苯,生成2-甲基-5-硝基苯磺酸,在无催化剂的条件下,用次氯酸钠溶液氧化缩合2-甲基-5-硝基苯磺酸,生成4,4′-二氨基二苯乙烯-2,2′-二磺酸,再用盐酸铁粉还原得4,4′-二氨基二苯乙烯-2,2′-二磺酸(简称DSD酸)。  相似文献   

7.
以2,2'-双[4-(3,4-二羧基苯氧基)苯基]丙烷二酐(BPADA)、4,4'-联苯醚二酐(ODPA)和二氨基二苯醚(ODA)三者合成的共聚聚酰亚胺作为稳定剂,氯金酸为纳米金的前驱体,通过直接还原法制备综合性能优异的复合纳米材料.然后对复合材料结构、热性能、机械性能、光学性能进行表征.金纳米粒子在共聚聚酰亚胺基体中分散均匀.在金纳米粒子的负载量达到0.45%之前,复合膜的热稳定性和机械强度均随着纳米金负载量的增加升高,这是因为无机纳米粒子的引入提高复合薄膜的结晶度造成的.当纳米金的负载量超过0.45%时,由于金纳米粒子的团聚是的复合薄膜的热稳定性和机械性能下降.复合膜在可见光区的紫外透过率达到80%左右.  相似文献   

8.
以3-氯代邻苯二甲酸酐和间苯二酚为初始原料,研究了反应时间、反应温度对合成3,3'-(间苯)二醚二酐(3,3'-Rs DPA)单体的影响.以邻苯二甲酸酐(PA)为封端剂,将合成的3,3'-Rs DPA与1,4-双(4-氨基苯氧基)苯(TPEQ)、1,3-二氨基苯(MPD)、4,4'-二氨基二苯醚(4,4'-ODA)和1,4-二氨基苯(PDA)发生缩聚反应,经化学亚胺化制备了一系列聚酰亚胺(PI)模塑粉,并对聚酰亚胺的热性能、力学性能进行了表征.结果表明:合成的聚酰亚胺具有良好的热稳定性,其质量损失5%的热分解温度在空气中为525~531℃,在氮气中为526~538℃;玻璃化转变温度(Tg)随着二胺单体刚性的增加从218℃升高到261℃.当二胺单体为PDA时,PI(3,3'-Rs DPA-PDA)具有明显的熔融结晶行为,其熔融温度(Tm)为327℃.良好的耐热性及优异的可加工性能使该聚酰亚胺材料有望用于3D打印技术中.  相似文献   

9.
共缩聚聚酰胺酸和聚酰亚胺的合成与表征   总被引:1,自引:0,他引:1  
以4,4′-二氨基二苯甲烷(MDA)为二胺单体,均苯四甲酸酐(PMDA)和3,3′,4,4′-二苯酮四羧酸二酐(BTDA)为二酐单体,低温溶液聚合生成一种共缩聚聚酰胺酸(PAA).然后亚胺化脱水环化生成共缩聚聚酰亚胺.通过特性粘度([η])、红外光谱(FT—IR)、热重分析(TG)和X衍射分析(XRD)等对聚合物进行了一系列的结构表征和性能测试.FT-IR表明,在1777 cm~(-1)和1723 cm~(-1)处观察到聚酰亚胺特征峰;TG表明.PI的10%热失重温度为568℃;XRD表明,PI的结晶度较低且分子链间距d为0.5069 nm.  相似文献   

10.
联苯型双醚二酐的合成及其表征   总被引:1,自引:0,他引:1  
以4,4'-二羟基联苯(联苯二酚)和N-甲基-4-硝基邻苯二甲酰亚胺为主要原料,在非质子性溶剂中,经缩舍得到联苯双醚二酞酰亚胺,再经水解、酸化、脱水等工艺制得联苯型双醚二酐(BPEDA)。通过红外光谱对产品进行了表征,结果符合要求。该单体与4,4'-二氨基二苯醚(ODA)在N,N-二甲基乙酰胺(DMAc)中缩聚所得聚酰胺酸特性粘度为0.72dL/g。将PI制成薄膜,室温下拉伸强度为98.5MPa,成膜性能良好。  相似文献   

11.
利用硫修饰柔性羧酸配体在水热条件下合成了两个一维结构的Cd配合物:[Cd(L1)(5,5′-dmbpy)]n(1)和[Cd(L2)(dibp)]n(2)(H2L1=2,2′-(1,3-亚苯基)双(亚甲基))二(硫基)苯二羧酸、H2L2=2,2′-(1,4-亚苯基)双(亚甲基))二(硫基)苯二羧酸、dibp=1,3-双[(1H-咪唑-1-基)甲基]苯、5,5′-dmb′py=5,5-二甲基-2,2-联吡啶).两个配合物均为一维链状结构.荧光测试表明,两个配合物均能够在DMF溶剂中快速高效地选择性识别Fe~(3+)和Cr_2O_7~(2-)离子,配合物1对Fe~(3+)和Cr_2O_7~(2-)离子的结合常数分别为2.72×104和3.59×103 M-1,检测限分别为1.34和4.90μM;配合物2对Fe~(3+)和Cr_2O_7~(2-)离子的结合常数分别为5.23×104和1.56×103 M-1,检测限分别为2.09和5.86μM.该论文详细讨论了荧光传感机理.  相似文献   

12.
从分子设计的角度出发,合成了1,3-双(4-氨基苯氧基)苯二胺单体,利用二步法溶液聚合制备了均苯四甲酸二酐/1,3-双(4-氨基苯氧基)苯聚酰亚胺,采用化学与梯度升温热亚胺化对聚酰胺酸脱水亚胺化。FTIR、DSC、HPLC、NMR为主要分析手段,研究了二胺单体的纯度与结构,聚酰胺酸亚胺化工艺。研究发现所制备的1,3-双(4-氨基苯氧基)苯纯度达99%以上,梯度升温提高聚酰胺酸亚胺化程度。  相似文献   

13.
以3,3′,4,4′-二苯酮四甲酸二酐(BTDA)和4,4′-二氨基二苯醚(ODA)为缩聚单体,利用高压静电纺丝技术制备出纳米Al_2O_3/PAA(聚酰胺酸)复合薄膜.以均苯四甲酸二酐(PMDA)和4,4′-二氨基二苯醚(ODA)为原料制备出聚酰胺酸铺膜胶液,在电纺膜的两侧进行流延成膜,并热亚胺化处理.对复合薄膜进行化学组成、微观形貌、耐电晕性能、力学性能和热学性能测试分析.结果表明:复合薄膜的亚胺化较完全,纳米Al_2O_3均匀地分散在聚酰亚胺基体中,在纳米氧化铝掺杂量为6%时综合性能最佳,耐电晕老化时间为12.3 h,是未掺杂纳米氧化铝三层复合薄膜的3倍以上,拉伸强度达到最大值(174 MPa),同时断裂伸长率达到21%.纳米Al_2O_3的加入使得复合薄膜的热稳定性有所提高,起始热分解温度从578.7℃提高到591.3℃.  相似文献   

14.
以均苯四甲酸二酐(PMDA)、4,4-二氨基二苯基醚(ODA)为单体原料,制备了聚酰亚胺固相微萃取涂层。用正硅酸乙酯和1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷分别对聚酰亚胺涂层改性,制备了正硅酸乙酯改性聚酰亚胺和硅烷偶联剂改性聚酰亚胺固相微萃取涂层。采用红外光谱表征了聚酰亚胺及其改性涂层的结构;通过热重分析测试了涂层的热稳定性;通过X射线光电子能谱(XPS)对涂层的表面元素组成、化学环境进行分析,考察了涂层表面结构对吸附性能的影响,硅烷偶联剂改性PI涂层对苯的吸附量大于正硅酸乙酯改性PI涂层和PI涂层。  相似文献   

15.
双酮酐型聚酰亚胺(PI)具有优异的耐热性能及力学性能,制备此类型聚酰亚胺的重要单体之一是多烷基化合物.通过低温Friedel-Crafts酰基化反应制备1,4-二(3',4'-二甲基苯甲酰基)苯、1,3-二(3',4'-二甲基苯甲酰基)苯、4,4'-二(3',4'-二甲基苯甲酰基)二苯醚、4,4'-二(3',4'-二甲基苯甲酰基)联苯4种四甲基二甲酰型芳环化合物,并且分别对4种化合物的结构进行了红外和核磁分析.结果表明:所得4种化合物与目标产物一致,有望拓展双酮型二酐的种类,进而合成性能更佳的新型双酮酐型聚酰亚胺.  相似文献   

16.
设计含二氮杂萘酮结构的3种二胺单体,与4,4′-(4,4′-异丙基二苯氧基)双(邻苯二甲酸酐)(双酚A二酐)合成一系列不对称新型聚酰亚胺.采用傅里叶红外光谱、核磁共振氢谱法、差示扫描量热法、热重法、凝胶渗透色谱等手段对聚酰亚胺进行结构表征和性能测试,并研究其溶解性、特性粘度.结果表明:聚酰亚胺在室温下易溶于氯仿、吡啶、二甲基甲酰胺、二甲基乙酰胺、N-甲基吡咯烷酮等非质子极性有机溶剂,其氯仿溶液能形成透明、韧性较好的膜,特性粘度为0.50~0.81dL·g-1;聚酰亚胺(P4b~P4c)的数均分子量(Mn)和分散指数(PDI)分别为25 000~34 000和1.21~1.27;此类聚酰亚胺玻璃化转变温度(tg)均大于235℃,而在氮气氛围下,800℃时的残余量为51%~58%,5%和10%的热失重温度分别为446~480℃和459~495℃.  相似文献   

17.
2,2′-联吡啶-4,4′-二甲醇在SeO2氧化作用下制得2,2′-联吡啶-4,4′-二甲醛,2,2′-联吡啶-4,4′-二甲醛与丙二腈在无催化条件下,成功地进行了Knoevenagel反应,合成了目标化合物2,2′-(2,2′-联吡啶-4,4′-二次甲基)二丙二腈,通过MS、1H NMR、元素分析及紫外-可见分光光度法对其进行了结构及性能表征,并探讨了其合成工艺.  相似文献   

18.
含羧基活性基团的聚酰亚胺制备和表征   总被引:2,自引:1,他引:1  
合成了一种4,4′-二氨基-4″-羟基三苯甲烷的二胺单体,用该单体分别和芳香性二酐、酯环二酐以及含氟二酐制备了三种含羟基聚酰亚胺,并对其溶解性能和热性能进行了初步研究,发现含羟基二胺单体和含氟二酐生成的聚酰亚胺能溶解在极性非质子溶剂中,且显示出良好的耐热性能,这种聚酰亚胺可通过羧基引入功能基团制备功能性聚酰亚胺。  相似文献   

19.
以9,9-双(3-氟-4-氨基苯基)芴和4,4 (六氟异丙烯)二酞酸酐为单体合成含芴聚酰亚胺(FFDA-6FDA), 并采用Fourier变换红外光谱(FT-IR)、 核磁共振氢谱(1H NMR)对其结构进行表征. 实验结果表明: FFDA-6FDA的结构与预期结果相同, 单体间酰亚胺化反应完全; 室温下FFDA-6FDA在多种常规有机溶剂中溶解性良好; FFDA-6FDA具有较高的热稳定性能, 其玻璃化转变温度为370 ℃, 氮气中10%热失重温度为582 ℃, 800 ℃的热残留率大于61%; FFDA-6FDA薄膜具有较好的光学透明性, 截断波长为294 nm.  相似文献   

20.
采用50%发烟硫酸磺化对硝基甲苯,生成2-甲基-5-硝基苯磺酸,在无催化剂的条件下,用次氯酸钠溶液氧化缩合2-甲基-5-硝基苯磺酸,生成4,4′-二硝基二苯乙烯-2,2′-二磺酸,再用盐酸铁粉还原得4,4′-二氨基二苯(烯-2,2′-二磺酸(简称 DSD 酸).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号