首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 209 毫秒
1.
设计并实现了低功耗的欠采样保持(under-sampling and hold)电路,该电路可应用在模数转换器的前端.该电路选取全差分的电荷传递式开关电容结构,具有欠采样功能的高速自举开关及连续时间共模负反馈结构的两级运算放大器.该电路基于SMIC CMOS 0.18μm 1P6M工艺绘制,测试结果表明,在电源电压为3.3 V,采样频率fs为2 MHz,信号频率fa为2.01 MHz时,总功耗约为1 mW,等效信号频率fa'为10 kHz的信噪失真比RSND为47 dB.该电路可以广泛应用于频移键控调制系统中.  相似文献   

2.
设计了一种适用于10位100MHz的流水线模数转换器的采样保持电路.利用SMIC0.13μmCMOS工艺,设计了一个直流增益为87.6dB的全差分自举增益放大器,其功耗仅7.2mW,且达到0.05%精度的响应时间小于4ns.在采样时钟频率为100MHz,输入信号频率为10MHz时,该采样保持电路的无杂散动态范围(SFDR)为80.7dB.  相似文献   

3.
为了降低流水线模数转换器功耗与提升输入信号范围,设计了一种无采样保持运放前端电路. 移除采样保持运放降低了功耗,并改进开关时序进一步降低电路功耗;同时改进传统开关电容比较器输入,使得模数转换器可达到0 ~ 3.3 V满电源电压的量化范围. 将设计的无采样保持运放前端电路应用在一款低功耗12位50 MS/s流水线模数转换器进行验证,采用0.18 μm 1P6M工艺进行流片,芯片面积为1.95 mm2. 测试结果表明:3.3 V电压下,采样率为50 MS/s、输入信号频率为5.03 MHz时,信噪失真比(SNDR)为64.67 dB,无杂散动态范围(SFDR)为72.9 dB,功耗为65 mW.  相似文献   

4.
设计了一种全数字实现的5bit闪烁型模数转换器,该设计的核心思想是通过差分延时链对,将输入的差分模拟信号转换为延时信号,再经过锁存器得到与相应参考电压的比较结果.该数字比较器的参考电压内置于差分延时链对,无需从外部输入.采样保持电路的开关和保持电容也使用数字库中的合适器件代替.该模数转换器完全采用标准数字单元库中的单元搭建而成,与传统实现方法相比,在功耗、面积及设计复杂度上均有了较大程度的改善.电路采用TSMC 65nm工艺设计,核心面积为0.02mm2,在采样频率为100MS/s的情况下,后仿真功耗低达0.6mW,SFDR为37.89dB,ENOB为4.55bit.  相似文献   

5.
提出了一种改进型两级运算跨导放大器,采用class-AB输出级,电平位移技术以及嵌套式密勒补偿技术,设计并实现了一个采样/保持电路,用于12位精度、40 MHZ转换速率的流水线模/数转换器.在输入信号19 MHz频率以及±1.2 V信号摆幅下,采样/保持电路的频谱分析结果表明,输出信号的信噪失真比达到101.7 dB,无杂散动态范围达到111.8 dB该电路采用TSMC 0.18/μmCMOS工艺,电源电压为1.8 V,功耗仅为5 mw.  相似文献   

6.
介绍了一种适合于高速模数转换器(ADCs)的预放大-锁存(preamplifier-latch)CMOS比较器.此电路结构包括一个预放大器、锁存比较器和输出缓冲器.在预放大器和正反馈锁存比较器之间加入分离电路,以此来减少回扫(kickback)噪声对电路的影响.采用0.35 μm标准CMOS工艺库,在Cadence环境下进行仿真,该比较器在时钟频率为500 MHz,采样频率为40 MHz的时候,可以达到30 μV的精度,功耗大约为0.6 mW.  相似文献   

7.
采用流水线结构完成了一个10位精度150MHz采样率的模数转换器的设计.通过采用动态比较器降低电路的功耗.在采样保持电路中使用一种新颖的自举开关,可减小失真,使得电路在输入信号频率很高时仍具有很好的动态性能.芯片采用台积电(TSMC)0.25μm CMOS工艺,其有效面积为2.8mm2.测试结果表明,最大积分非线性误差和微分非线性误差分别为1.15LSB和0.75LSB;在150MHz采样率下,对80MHz信号转换的无杂散动态范围为52.4dB;功耗为97mW.  相似文献   

8.
低功耗33MHz采样频率,10比特流水线结构的模数转换器   总被引:4,自引:0,他引:4  
介绍了一个 33MHz,10bit,3 3V流水线结构的模数转换器 (ADC) .该ADC采用了一种带预放大级的运算放大器和一种动态比较器来降低功耗 ;采用了电荷泵电路来提升时钟信号的电压 ;采用了一个恒跨导偏置电路 .本芯片在 0 35 μmCMOS工艺上实现 ,芯片面积为 1 2× 0 .4mm2 .芯片工作在 33MHz时功耗为 6 9 4mW ,采样 16MHz正弦信号时的信噪比 (SNDR)为 5 8 4dB .  相似文献   

9.
介绍一种全差分、低功耗CMOS运算跨导放大器(OTA)。这种放大器用于10位分辨率、30MHz采样频率的流水线式A/D转换器的采样-保持和级间减法-增益电路中。该放大器由一个折叠-级联OTA和一个共源输出增益级构成,并采用了改进的密勒补偿,以期达到最大的带宽和足够的相位裕度。经过精心设计,该放大器在0.35μmCOMS工艺中带宽为590MHz,开环增益为90dB,功耗为15mW,满足高速A/D转换器要求的所有性能指标。  相似文献   

10.
设计了一款低电压实现的14bit,100MS/s流水线型模数转换器(Pipelined ADC),该ADC前端采用无采样保持运放结构来降低功耗和减小噪声,减少了第一级采样网络孔径误差和非线性电荷注入的影响.通过选取合适的输入采样电容容值解决了kT/C噪声和电容不匹配的问题,并设计了符合系统要求的低电压高速高增益运放.该模数转换器同时也包含了带隙基准、分布时钟产生电路、参考电压和共模电压缓冲器等电路模块.芯片采用TSMC 65nm GP 1P9M CMOS工艺实现,面积为3.2 mm2(包含PAD).测试结果表明,当采样率为20MS/s,输入信号频率为1.869MHz时,信噪比(SNR)为66.40dB,信噪失真比(SNDR)为65.21dB,无杂散动态范围(SFDR)为73.44dB,有效位数(ENOB)为10.54bit.电源电压为1.2 V,整个模数转换器的总功耗为260mW.  相似文献   

11.
一种高性能全差分运算放大器的设计   总被引:1,自引:1,他引:0       下载免费PDF全文
设计了一种具有高增益、大带宽的全差分折叠式共源共栅增益自举运算放大电路,适用于高速高精度流水线模数转换器余量增益电路(MDAC)的应用,增益自举运算放大器的主放大器和子放大器均采用折叠式共源共栅差分结构,并且主放大器采用开关电容共模反馈来稳定输出电压,该放大器工作在5.0V电源电压下,单端负载为2pF,采用华润上华(CSMC)0.5μm 5VCMOS工艺对电路进行仿真测试,结果显示该运放的直流增益可达到126.3dB,单位增益带宽为316MHz。精度为0.01%时的建立时间为4.3ns。  相似文献   

12.
为提高低功耗条件下运放电路的工作速度,基于Class-AB复合型差分对、非线性电流镜传输、交叉耦合对管正反馈3种结构的有机组合,提出了一种高速运算跨导放大电路(OTA)的结构设计方案.该方案在低功耗条件下,电路具有优异的摆率倍增性能,同时电路小信号带宽与低频增益得到一定程度的改善.电路采用CSMC 0.5μm CMOS工艺进行设计并完成MPW流片.在5 V电源电压下测试得到的电路静态功耗仅为11.2μA,最大上升沿与下降沿摆率分别为10和2 V/μs,低频增益60 dB以上,单位增益带宽达到3 MHz.结果表明,新型Class-AB OTA电路比同类参考OTA电路具有更高的大信号瞬态响应品质因子.  相似文献   

13.
设计了一种基于电流控制逻辑(CSL)架构的650MHz环型压控振荡器(VCO),对传统的共源共栅结构偏置电路作了进一步的改善,加了一个电压增益较大的放大器构成有源负反馈以提高抗电源噪声的能力.同时也提出了一种阻尼因子控制电路结构,使该VCO可用于快速稳定的锁相环(PLL).该VCO采用和舰0.18μm双阱CMOS工艺仿真,在频率为20MHz、峰—峰值为200mV的高频电源噪声下,其峰-峰抖动和RMS抖动分别为22.649ps和7.793ps。该VCO输出频率为650MHz,占空比约为52%,增益(Kvco)为925.88MHz/V,线性度良好,在1.8V的直流电源下功耗约为0.7mw。  相似文献   

14.
设计了一种新型电荷泵电路,该电路采用了差分反相器,可工作在2 V的低电压下,具有速度快、波形平滑、结构简单、功耗低等特点.HSpice仿真结果显示,电荷泵的工作频率为10 MHz时,功耗仅为0.1 mW,输出信号的电压范围宽(0~2 V).该电路可广泛应用于差分低功耗锁相环电路中.  相似文献   

15.
一种高速低相位噪声锁相环的设计   总被引:1,自引:0,他引:1  
设计了一种1.8V、SMIC0.18μm工艺的低噪声高速锁相环电路.通过采用环行压控振荡器,节省了芯片面积和成本.通过采用差分对输入形式的延时单元,很好地抑制了电源噪声.与传统的简单差分对反相器延时单元相比,该结构通过采用钳位管和正反馈管,实现了输出节点电位的快速转变,整个电路芯片测试结果表明:在输入参考频率为20MHz、电荷泵电流为40μA、带宽为100kHz时,该锁相环可稳定输出频率为7971MHz—1.272GHz的时钟信号,且在中心频率500kHz频编处相位噪声可减小至-94.3dBc/Hz。  相似文献   

16.
设计了一款适用于单芯片集成真空传感器的10位SAR型A/D转换器.轨至轨比较器通过并联两个互补的子比较器实现.信号采样时,比较器进行失调消除,提高电路的转换精度.电路采用0.5μm2P3M标准CMOS工艺制作.系统时钟频率为20MHz,输入电压范围为0~3V.在1.25MS/s采样率和4.6kHz信号输入频率下,电路的信噪比为56.4dB,无杂散动态范围为69.2dB.芯片面积为2mm2.3V电源电压供电时,功耗为3.1mW.其性能已达到高线性度和低功耗的设计要求.  相似文献   

17.
在3.3V电源电压下采用中芯国际(SMIC)0.18μm混合信号CMOS工艺设计了一个单级全差分运算放大器.所设计的运放采用了增益提升技术,其主运放为一个带有开关电容共模反馈的全差分折叠-共源共栅运放,两个简单的连续时间共模反馈电路的运放作为辅运放用来提升主运放的开环增益.仿真结果表明,所设计的运放直流增益可达110dB,单位增益带宽为5MHz.  相似文献   

18.
The paper describes a novel low-power CMOS voltage-controlled oscillator (VCO) with dual-band local oscillating (LO) signal outputs for 5/2. 5-GHz wireless local area network (WLAN) transceivers. The VCO is based on an on-chip symmetrical spiral inductor and a differential varactor. The 2. 5-GHz quadrature LO signals are generated using the injection-locked frequency divider (ILFD) technique. The ILFD structure is similar to the VCO structure with its wide tracking range. The design tool ASITIC was used to optimize all on-chip symmetrical inductors. The power consumption was kept low with differential LC tanks and the ILFD technique. The circuit was implemented in a 0.18-fim CMOS process. Hspice and SpectreRF simulations show the proposed circuit could generate low phase noise 5/2. 5-GHz dual band LO signals with a wide tuning range. The 2. 5-GHz LO signals are quadrature with almost no phase and amplitude errors. The circuit consumes less than 5. 3mW in the tuning range with a power supply voltage of 1  相似文献   

19.
设计了一个用于非相干脉冲超宽带接收机的0.18-μm CMOS工艺的能量检波器.该检波器包含了输入匹配模块、平方电路、翻转电压跟随器-电流检测电路、跨导级以及输出缓冲器.平方电路运用饱和区晶体管的平方律特性对输入差分信号进行平方,所得到的输出电流由翻转电压跟随器-电流检测电路转换成电压.跨导级对该信号进行放大并积分得到所接受的能量.测试结果可以看出,当输入信号的峰峰值超过60mV时,在高达300 MHz的频率下检波增益可以达到10 dB.而最小检测幅度为13 mV,此时的检波增益为5 dB.在移除输出缓冲器之后,输出脉冲的幅度将增加一倍.不计及测试焊盘,芯片面积为0.23 mm×0.3 mm.电路由一个1.8 V的电源供电,核心电路电流为3.5 mA.该检波器已成功应用于开关键控方式的接收机以实现高速宽带通信.  相似文献   

20.
基于TSMC 0.18 μm工艺实现了一款适用于射频收发机的全集成小数分频频率合成器. 设计中采用了三阶MASH结构Σ-Δ调制器以消除小数杂散,为节省芯片面积使用了环形振荡器,同时在电路设计中充分考虑了各种非理想因素以提高频谱纯净度和降低芯片功耗. 仿真结果表明,该频率合成器可以在900 MHz~1.4 GHz的频率范围内产生间隔为25 kHz的输出信号. 在1.2 GHz输出时,偏离载波频率1 MHz处的相位噪声可以达到-106 dBc/Hz, 锁定时间小于10 μs.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号