首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
分析了高压栅极驱动集成电路热耗散产生的原因和隔离技术的特点,研制出一种新型的700VBCD工艺栅驱动集成电路.通过减小LDMOS电流和开启时间降低芯片高速工作时的发热量,配合电路设计调整了BCD工艺,解决了高功耗和地线浮动等制约其发展和应用的难题.仿真和测试结果表明,该集成电路工作在1MHz,400V时,总功耗仅为0.4W.  相似文献   

2.
模拟和验证了一种低成本的,以标准CMOS工艺为基础,无需对原工艺流程进行改动的高压工艺技术。讨论了低压器件中的各种击穿机理,相应提出了高压器件中所做出的改进,列举了该工艺技术中所用的特殊版图;对此工艺的应用性进行了二维的工艺和器件模拟;将模拟结果与实际测试结果进行了比较,验证了这种高压工艺技术的实用性。  相似文献   

3.
一种具有温度补偿、高电源抑制比的带隙基准源   总被引:19,自引:0,他引:19  
介绍了一种用于集成电路内部的带隙基准源 ,采用了 3.3V ,0 .35 μm ,N阱 ,CMOS工艺 .通过Spectres和HSpice的仿真 ,它具有 6× 10 -6K-1的温度系数和 2 .2mV/V的电源抑制比 .  相似文献   

4.
本文介绍一种与Ⅳ阱硅栅CMOS集成电路技术完全兼容的高压MOS器件的设计方法和制备工艺。这种高压MOS器件可以和CMOS逻辑电路、模拟电路集成在同一芯片上而不需任何附加工艺步骤。此种器件的闽电压为|1±0.2|V,漏击穿电压大于300V,泄漏电流小于50nA,当宽长此为115,栅偏压V_(GS)=10V时,其饱和电流大于35mA,跨导大于4000μ,而导通电阻小于600Ω。该器件在等离子显示、静电复印、场致发光、高低压开关等方面有广泛的应用。  相似文献   

5.
为满足标准P阱CMOS工艺要求 ,设计了一种新的电流求和型Bandgap电压基准电路 ,实现了相对于地的稳定电压输出 ,并且能提供多电压基准输出 .电路采用 0 6μmUMCP阱CMOS工艺验证 ,HSPICE模拟结果表明 :电路输出基准电压为 80 0mV ;在 - 40~ 85℃的温度变化范围内 ,电路温度系数仅为 1 4× 1 0 -6/℃ ;电源电压为 3 5V时 ,电路功耗低 ,消耗电流仅为 1 5 μA .该电路不需改变现有工艺 ,输出灵活 ,有望在多基准电压的低功耗系统中获得较广泛的应用  相似文献   

6.
一种CMOS过热保护电路   总被引:6,自引:0,他引:6  
提出了一种用于集成电路内部的过热保护电路。采用0.6цmn阱互补金属氧化物半导体(CMOS)工艺的spectre仿真结果表明,此电路对因电源电压、工艺参数变化而引起的过热保护阈值点漂移有很强的抑制能力。通过引入反馈的方法解决了过热保护电路中热振荡带来的危害。  相似文献   

7.
基于0.18 μm射频锗硅工艺,提出了一种可广泛应用于无线通信系统的低插入损耗和高线性度的射频开关电路.该电路利用特殊的深N阱工艺、高衬底电阻器件,采用经典的串并联堆叠结构开关电路,实现了低插入损耗和高线性度的目的.测试结果显示:在频率为2.4 GHz下,插入损耗,隔离度和1 dB压缩点分别为-1 dB,- 34 dBm和23 dBm.  相似文献   

8.
设计了一种基于0.8μm,双阱BiCMOS高压工艺的高精度LDO线性稳压电路.电路采用四管单元带隙基准作温度补偿,多级误差放大反馈结构稳定输出电压,其中直接将带隙基准电路作为误差放大电路的一部分,从而在不增加电路复杂性的基础上,使整个误差放大电路经过多级放大,增益得到大幅提高.Hspice仿真结果表明:电路在较宽的频率范围内,电源抑制比约为85 dB;在温度由-20~80℃变化时,其温度系数约为±35×10-6/℃;电源电压在4.5~28 V之间变化时,最坏情况下其线性调整率为0.031 mV/V;负载电流由0 mA到满载2 mA变化时,其负载调整率仅为0.01 mV/mA.  相似文献   

9.
通过常规的透射光谱测量,提供一种获取GaAs/AlGaAs多量子阱材料中上电极层、多量子阱区域实际生长厚度的简便、无损伤的方法,这两个厚度参数在器件制备工艺、材料生长参数修正中起关键作用.  相似文献   

10.
采用CSMC双层多晶、双层金属、N阱0.6μm互补金属氧化物半导体工艺,设计一种脑电信号检测专用集成电路(ASIC).系统包含基于斩波技术的差分差值放大器、跨导运算放大器(OTA)-C低通滤波电路、增益调整电路、两相非重叠时钟产生电路和带隙电压基准等电路.仿真结果表明,输入信号在-0.862~0.902V范围内,输入和输出都是线性关系,且共模抑制比可达114 dB,符合设计要求.  相似文献   

11.
设计了一种基于外接泵电容的1.33倍新型电荷泵电路.电路采用了预启动和衬底电位选择结构,并利用三相时钟信号方式控制电荷泵的工作状态.采用0.5μmCMOS工艺模型利用Cadence的Specter工具进行了仿真.结果表明:所设计的电路提高了芯片的启动速度,有效防止了闩锁现象的产生;在典型的3.3 V输入电压下,电荷泵效率为93.25%.与传统电荷泵相比优势在于输出电压低,有效地降低了无用功耗.1.33倍电荷泵必将具有广泛地应用前景.  相似文献   

12.
随着片上系统(SoC)电源电压的降低,嵌入式快闪存储器内部电荷泵电路的电压增益不断下降.为提高低电源电压下电荷泵电路的效率,提出了一个基于两路互补结构的高效率电荷泵电路,并设计了栅压提高电路与衬底调节电路,二者的共同作用可以有效地减少传输电压的损失,提高电荷泵电路的电压增益.模拟结果表明:当电源电压为1.5V时,相比于...  相似文献   

13.
孙航  李耀  马利业 《山西科技》2010,25(4):42-43
数字芯片特别是74系列逻辑芯片在学生实验中更是至关重要,实验中要保证实验的效果,必须要求所用的芯片逻辑功能完整,但如果对所用芯片的各个管脚进行逐一测试,就显得十分繁琐。另外,在数字电路的维护和维修中也经常要对芯片的好坏进行检测。针对上述需要,设计了以89C52单片机为控制核心并针对74系列逻辑芯片将传统检测算法进行优化后的简单可行的芯片检测指示仪。  相似文献   

14.
根据基本CMOS集成运算放大器的电路特点及设计指标,编制了PSPICE电路通用分析源程序,由模拟结果推导出各模拟参量与其决定因素之间的关系,进而确定了由设计指标决定的版图几何尺寸和工艺参数,提出了伸缩性版图设计的思想,建立了从性能指标到版图设计的优化路径,为实现模拟集成电路版图的自动设计提供了初步的步骤和程序。  相似文献   

15.
具有软开关的高频电荷泵功率因数校正电路   总被引:2,自引:0,他引:2  
对电荷泵电路实现功率因数校正(PFC)的原理及其实现条件进行分析,提出一种具有软开关的高频电荷泵PFC电路,并详细论述该电路的工作原理及其软开关实现;最后对该电路在电子镇流器中的应用电路进行仿真和试验.研究结果表明:电路的功率因数高,谐波含量小,是一种结构简单、性能优良的功率因数校正方法.  相似文献   

16.
提出多输入端运算跨导放大器的两种CMOS电路结构。对结构特点和设计原则作了对比分析;对设计实例电路提供了SPICE程序模拟结果。  相似文献   

17.
设计了一个低电源电压的高精密的CMOS带隙电压基准源,采用SMIC 0.18μm CMOS工艺。实现了一阶温度补偿,具有良好的电源抑制比。测试结果表明,在1.5 V电源电压下,电源抑制比为47 dB,在0~80℃的温度范围内,输出电压变化率为0.269%,功耗为0.22 mW,芯片核面积为0.057 mm2。  相似文献   

18.
为了减少芯片面积,提高电荷泵的增益,提出一种基于共享技术的电荷泵电路。通过改变两个子电荷泵的串并连接关系,既可以产生一种电压较高而电流驱动能力较小的负高压,也可以产生一种电压较低但是电流驱动能力很大的负高压,这不仅满足了系统在编程和擦除时对高压的不同需求,而且还节省了大约50%的芯片面积。电荷泵电路还采取了对其中P型M O S管的衬底电压进行动态控制的方法。模拟结果表明,该电荷泵的增益提高了大约14%。该电路特别适用于需要两种以上负高压以完成编程和擦除操作的快闪存储器。  相似文献   

19.
设计了一种新型电荷泵电路,该电路采用了差分反相器,可工作在2 V的低电压下,具有速度快、波形平滑、结构简单、功耗低等特点.HSpice仿真结果显示,电荷泵的工作频率为10 MHz时,功耗仅为0.1 mW,输出信号的电压范围宽(0~2 V).该电路可广泛应用于差分低功耗锁相环电路中.  相似文献   

20.
A self-balanced charge pump (CP) with fast lock circuit to achieve nearly zero phase error is proposed and analyzed. The proposed CP is designed based on the SMIC 0.25μm 1P5M complementary metal oxide semiconductor (CMOS) process with a 2.5 V supply voltage, HSPICE simulation shows that even if the mismatch of phase/frequency detector (PFD) was beyond 10%, the charge pump could still keep nearly zero phase error, Incorporated fast lock circuit can shorten start-up time to below 300 ns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号