首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
以玉米淀粉为原料,研究了玉米多孔淀粉制备过程中各种因素对产物成孔效果的影响,探讨了酶解成孔的机理,并对制备工艺进行了初步优化.在糖化酶和耐高温α-淀粉酶混合成的复合酶作用下,玉米淀粉水解制备玉米多孔淀粉的最佳工艺为:加酶量为按照理论水解55%淀粉的30倍加入量,糖化酶与耐高温α-淀粉酶的配比7:1,反应体系pH值5.6,酶解温度60℃,淀粉浓度60%,反应时间20h.反应后玉米淀粉的吸油率由16.15%提高到了47.59%.  相似文献   

2.
以淀粉水解率为指标,分析白芸豆α-淀粉酶抑制剂对淀粉水解的抑制作用,并进一步对白芸豆α-淀粉酶抑制剂对不同方便粥血糖生成指数(GI值)的影响进行研究.结果表明:随着大米粥中白芸豆α-淀粉酶抑制剂添加量由0%升到5.0%,大米粥的淀粉水解率不断下降,且其GI值由86.63降至32.03;进而将白芸豆α-淀粉酶抑制剂按3.0%的添加量添加到方便粥(燕麦粥、青稞粥和莲子粥)中,方便粥的GI值均降低至55以下,属于低GI食品范畴.  相似文献   

3.
通过α-淀粉酶、葡萄糖淀粉酶、胰蛋白酶处理莲子浆,探索出了酶解莲子浆的最佳工艺条件.实验表明,在pH值为6.5,温度95℃下α-淀粉酶水解的最佳条件为酶与底物之比为24U/g莲子、底物浓度5%、水解时间为30min;在pH值为4.0,温度60℃下葡萄糖淀粉酶糖化的最佳条件为酶与底物之比为10000U/g莲子,底物浓度为11%,时间为11hr;在pH值为7.5,温度40℃下胰蛋白酶水解的最佳条件为酶与底物之比为16 000U/g莲子、底物浓度5%、水解时间为5hr.水解率可达56.25%,可得澄清透明的莲子原液.  相似文献   

4.
双酶协同作用机械活化玉米淀粉的水解规律   总被引:2,自引:0,他引:2  
采用搅拌球磨机对玉米淀粉进行机械活化,研究α-淀粉酶和糖化酶协同作用下活化淀粉的水解,探讨pH值、反应温度、酶用量、淀粉浓度等因素对活化淀粉水解的影响规律.结果表明,双酶协同作用下机械活化淀粉水解DE值比原淀粉高,说明机械活化能有效破坏淀粉的结晶结构,提高淀粉双酶水解的反应活性,加快酶解速度,缩短酶解时间.  相似文献   

5.
研究了温度和pH值对瘤背石磺(Onchidium verruculatum Cuvier)肠淀粉酶、肝胰腺淀粉酶和胃淀粉酶以及相应的纤维素酶活性的影响.不同温度和pH值对瘤背石磺消化酶活性的影响显著(P<0.05).当温度在5-75℃时,肠淀粉酶和纤维素酶分别在35℃和30℃时活性较高;肝胰腺淀粉酶和纤维素酶分别在35-45℃和50℃时活性较高;胃淀粉酶活性在25-45℃维持较高水平,随后随温度的升高而下降,纤维素酶活性在50℃时较高.在pH为3.0-8.0范围内,肠淀粉酶和纤维素酶的最适pH值均为6.0;肝胰腺淀粉酶和纤维素酶的最适pH值分别为6.9和5.4;胃淀粉酶和纤维素酶的最适pH值分别为6.5和6.0.在适宜温度和pH条件下,肠淀粉酶、肝胰腺淀粉酶和胃淀粉酶活性均远大于肠纤维素酶、肝胰腺纤维素酶和胃纤维素酶.  相似文献   

6.
耐酸性α-淀粉酶的分离提取及性质研究   总被引:3,自引:0,他引:3  
目的 以选育得到的耐酸性α-淀粉酶生产菌株黑曲霉Tx-78为出发菌株.对耐酸性α-淀粉酶的分离提取方法 及其性质进行研究.方法 通过液体发酵、减压浓缩及进一步提取得到粗酶制剂,对其最适宜反应温度、pH进行测定,对其稳定性及动力学性质进行研究.通过薄层层析对其水解淀粉的最终产物进行分析.结果 该酶最适宜反应pH为4.0,最适宜反应温度为70℃.当Ca2 浓度为7 mmol/,L时其作用最明显.动力学研究表明该酶的Km值为7.89 g/L.薄层层析结果 表明,该酶制剂水解淀粉最终产物为麦芽糖和葡萄糖.结论 该酶具有良好的耐酸性和耐热性.Ca2 对其有促进作用,能够实现在酸性条件下淀粉液化和糖化的同步进行,具有良好的应用前景.  相似文献   

7.
本文研究了以蕉芋淀粉为原料,用淀粉酶和固定化葡萄糖异构酶生产果葡糖浆的各种最适条件,包括pH、酶浓度、底物浓度、金属离子、温度、时间等因素。结果表明,α-淀粉酶和葡萄糖淀粉酶水解蕉芋淀粉的葡萄糖值可达95一99%。固定化葡萄糖异构酶转化葡萄糖为果糖的转化率可达45-54%,其甜度超过同浓度的蔗糖。通过与木薯、甘薯淀粉比较实验表明,蕉芋淀粉是制造果糖的良好原料,而且,它在长江以南均可普遍栽培。  相似文献   

8.
酶法制备微孔淀粉的工艺研究   总被引:19,自引:0,他引:19  
使用α-淀粉酶与糖化酶复合制备多孔淀粉,探讨反应温度、反应时间、pH值和酶用量等条件的影响,并且通过正交实验得出最佳工艺条件,当反应温度为50℃,pH值为6.0,反应时间为12h,酶用量为1.0%时,吸附率与得率的综合评定最高.  相似文献   

9.
α-淀粉酶的特性及其在淀粉粘合剂中的应用   总被引:2,自引:0,他引:2  
对来自枯草杆菌的商品α淀粉酶水解淀粉的活力与温度、pH值的关系以及α淀粉酶对温度和化学药品如乙二胺四乙酸二钠以及苯酚的耐受程度等进行了研究。结果发现,用α淀粉酶水解淀粉的最佳反应温度为90℃,反应的最佳pH值为6.0~6.2;反应完成后,用乙二胺四乙酸二钠在100℃以上结束反应最为有效,它可以将残余酶活力降至最低,从而抑制粘合剂在贮存过程中的粘度降低  相似文献   

10.
分子筛固定化葡萄糖淀粉酶性能的研究   总被引:1,自引:0,他引:1  
研究了温度、pH值、底物流速、底物浓度、底物的葡萄糖当量值(DE)等因素对分子筛固定化黑曲霉葡萄糖淀粉酶水解淀粉液化液反应性能的影响规律,考察了固定化酶催化剂的寿命. 在适宜条件下,供给质量百分数10%的淀粉液化液,连续22 d可产生DE值95以上的糖化液,运转30 d,活力仅下降25%. 以DE值15的玉米淀粉液化液为底物,糖化液中葡萄糖的质量百分数可达97%以上.  相似文献   

11.
卫文娴  梁兴泉 《广西科学》1997,4(4):279-281
对来自枯草杆菌的商品α-淀粉酶水解淀粉的活力与温度pH值的关系以及α-淀粉酶对温度和化学药品如乙二胺四乙酸二钠以及苯酚的耐受程度等进行了研究,结果发现,用α-淀粉酶水解淀粉的最佳反应温度为90℃,反应的最佳pH值为6.0~6.2反应完成后,用乙二胺四乙酸二钠在100℃以上结束反应最为有效,它可以将残余酶活力降至最低,从而抑制粘合剂在贮存过程中的粘度降低。  相似文献   

12.
使用一种重组脂肪酶对乙酸苯乙酯进行选择性水解拆分以得到R-α-苯乙醇.研究首先以选择性和转化率为指标,测定了底物浓度、酶量、缓冲液的浓度和pH、反应温度、摇床转速以及反应时间等因素对拆分效果的影响.结果显示,在最佳条件下,产物R-α-苯乙醇ee达到97.2%,转化率48%.反应液进行过硅胶柱分离后,R-α-苯乙醇的产率为30%,ee值为98%;S-乙酸苯乙酯在碱性条件下水解得到S-α-苯乙醇产率为40%,ee值为85%.  相似文献   

13.
平板水解圈法从土壤中分离产淀粉酶菌株。通过碘比色法测定产淀粉酶分离菌株的酶活,筛选出一株产酶量较高的菌株,鉴定其种类,并对其产酶条件优化及酶学性质进行研究。通过革兰氏染色、生化鉴定和16SrDNA序列比对鉴定该菌的种类;从pH、温度、碳源、氮源等方面进行产酶条件优化。菌种经16S rDNA PCR序列分析比对,为枯草芽孢杆菌,因此将分离到的菌株命名为Bacillus subtislis-Y9;菌株最佳培养基配方为:淀粉6g,酵母膏13g,氯化钠5g,添加1.0%的吐温于1000mL蒸馏水中;最佳培养条件为:初始pH值为7.5;培养温度为37℃,培养时间36h。在上述培养基和优化培养条件下菌株发酵液的α-淀粉酶酶活达到7.1U/mL,约为出发菌种的5.5倍。酶学研究显示,α-淀粉酶的最适反应温度为40~60℃,反应体系pH值为6.6,并需添加0.5%CaCl2。  相似文献   

14.
真菌α-淀粉酶固态发酵工艺及酶学性质研究   总被引:2,自引:0,他引:2  
通过对米曲霉ZLF13固态发酵生产真菌α-淀粉酶的培养基要求及发酵工艺条件进行研究,结果表明,以麸皮和适量淀粉为主要原料,添加1号复合无机盐,保持培养基水体积分数为60%~65%,控制培养温度30~34℃,发酵周期65~70 h.中试平均酶活力1 283 U/g.通过对其酶学性质的研究发现,米曲霉ZLF13所产真菌α-淀粉酶最适作用温度为55℃,最适作用pH值为4.8~5.4;65℃以上迅速失活.  相似文献   

15.
研究ErCl3对枯草杆菌所产α-淀粉酶的酶学性质如温度、pH性质的变化.研究结果表明,在枯草芽孢杆菌培养时加入ErCl3,所产α-淀粉酶的酶活、pH和温度性质具有较大改变.实验结果说明了ErCl3作用下枯草杆菌所产α-淀粉酶的活性提高,提高率为370%.在pH值为5~7时,酶活明显增加,酶活提高率为115.61%~126.32%.酶活最适温度由40 ℃上升为50 ℃,在50~70 ℃始终保持较高酶活性,酶的耐热性增加.  相似文献   

16.
混合酶法制备高含量可溶性糖南瓜粉   总被引:1,自引:0,他引:1  
采用混合酶水解南瓜中的淀粉.利用L9(34)正交实验优化了酶解工艺,确定的最佳工艺条件为:添加0.04%果胶酶、0.5%α-淀粉酶和1.0%的糖化酶;混合酶作用温度50℃,酶处理时间2 h,摇床摇速120 r/min,酶解后南瓜浆中的可溶性糖为9.37%.  相似文献   

17.
淀粉酶是水解淀粉的酶类,根据其分解淀粉的不同,可以分为α-淀粉酶和β-淀粉酶,α-淀粉酶可将淀粉水解为葡萄糖,而β-淀粉酶则只能从淀粉的非还原末端将淀粉水解为麦芽糖和限制型糊精,又称淀粉-1,4-麦芽糖苷酶,被广泛应用于饴糖、啤酒和高麦芽糖的生产,大麦、小麦、大豆和甘薯等植物中的β-淀粉酶含量高,中国主要以大麦芽作为β-淀粉酶源,每年需消耗大量粮食来生产β-淀粉酶制剂。  相似文献   

18.
罗春雷  韦宇拓 《广西科学》2018,25(3):248-252
淀粉酶是催化水解淀粉分子内糖苷键的一类酶的总称,因其氨基酸序列多样、来源广泛以及性质差异大,分类方法也有多种方式,比较主流的是以淀粉水解产物异头碳的构型来划分为α-淀粉酶和β-淀粉酶。目前已有多种淀粉酶被成功商业化,广泛应用于各行业中,本文对淀粉酶的一些分类方法及其应用进行综述。  相似文献   

19.
兼顾大肠杆菌与枯草芽孢杆菌密码子偏好性,优化获得了1个耐酸耐温淀粉酶的基因amyCN1,并将其在大肠杆菌中实现了功能表达。纯化后的重组α-淀粉酶(AMY1)表征结果表明:在最适pH 5.5和最适温度75℃条件下表观米氏常数(Km)值和催化效率(kcat/Km)值分别为20.93 g/L和98.20 L/(g.s);低浓度的Co2+(1 mmol/L)可以提高30%的淀粉酶活力,Mn2+抑制了大部分活力,包括Ca2+在内的其他金属离子影响不显著;高浓度的EDTA(≥50 mmol/L)抑制其活力;生物信息学分析表明,AMY1具有α-淀粉酶家族典型的3-结构域分布,具有1个Ca2+结合位点和5个Zn2+结合位点,活性中心催化氨基酸残基D198和E222位于(β/α)8桶中β折叠片C端一侧。AMY1优良的低pH耐受性和耐温性,有助于木薯淀粉生产燃料乙醇工业液化与糖化同步发酵工艺的实现。  相似文献   

20.
抗消化淀粉体外的评价方法   总被引:1,自引:0,他引:1  
采用体外模拟方法,研究了胃蛋白酶处理条件、α-淀粉酶消化条件等对抗消化淀粉含量测定的影响,结果表明,用2%胃蛋白酶在30℃条件下对淀粉样品处理70min,可有效除去淀粉中的蛋白质组分,当淀粉酶处于最高活性条件下,pH值为6.3~7,作用时间为20min,可以模拟体内淀粉酶对淀粉的消化过程,基本上除去了可消化淀粉部分,剩余部分即为抗消化淀粉。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号