首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
设R是环,R-模M称为余纯投射模,是指对任意平坦模F,都有Ext1R(M,F)=0.证明了余纯投射模或者是投射模,或者其平坦维数不低于2.还引入CPH环的概念,证明了R是CPH环当且仅当平坦模的内射维数不超过1,当且仅当R的每个理想是余纯投射的.  相似文献   

2.
通过引入∞-余纯平坦模,证明了:R是QF环当且仅当R是左Noether环,且每个有限表现左R-模是∞-余纯平坦模;R是右IF环当且仅当每个左R-模是∞-余纯平坦模;R是左CFH环当且仅当∞-余纯平坦模对子模封闭;左凝聚环R是左半遗传环当且仅当∞-余纯平坦左R-模是平坦的.  相似文献   

3.
R-模M称为FP-投射模是指对所有的有限表现模N,都有Ext~1_R(M,N)=0.证明每个模是FP-投射模当且仅当每个有限表现模是内射模,也证明当R是左Noether环时,则每个模是FP-投射模当且仅当R是半单环.而当R是左凝聚环时,每个模是FP-投射模当且仅当R是VN-正则环且是左自内射环.然后进一步揭示了FP-投射模的子模的性质,引入了左FP-遗传环的概念.证明R是左FP-遗传环当且仅当每个有限表现模的内射维数至多为1.  相似文献   

4.
模M称为P-投射模,是指对任意R-模N的任意循环子模Rx,同态f:M→N/Rx能提升为同态g:M→N.给出了P-投射模的一些新刻划,证明了M是P-投射模当且仅当对任何有限生成模K有Ext1R(M,K)=0当且仅当对R的任何左理想I有Ext1R(M,R/I)=0.并利用P-投射性与f-内射性给出了半单环的新刻划,证明了R是半单环当且仅当每个模是P-投射模当且仅当每个模是f-内射模.最后为了进一步揭示P-投射模的子模的性质,引入了P-遗传环的概念,证明了R是P-遗传环当且仅当有限生成模的内射维数不超过1.  相似文献   

5.
引入ZP-平坦右模来刻画左非奇异环.设R是环,右R-模N称为ZP-平坦模,是指对任意a∈Z(RR),有TorR1(N,R/Ra)=0;左R-模M称为ZP-内射模,是指对任意a∈Z(RR),有Ext1R(R/Ra,M)=0.证明了关于ZP-平坦模的Lambek准则,即右R-模N是ZP-平坦模当且仅当其特征模N+是ZP-内射模.还证明了R是左非奇异环当且仅当任意右R-模是ZP-平坦模当且仅当内射左R-模的商模是ZP-内射模.  相似文献   

6.
设R是环,称左R-模P为FT-投射模,是指对任何有有限投射分解的左R-模M,都有Ext_R~1(P,M)=0.证明R是左自内射环,当且仅当任何左R-模都是FT-投射模.  相似文献   

7.
设n是一非负整数,引入FCn-投射模和Gorenstein FCn-投射模,并在左n-余凝聚环上讨论了Gorenstein FCn-投射模的同调性质.证明了:若R是左n-余凝聚环且任意有限n-余表示R-模的内射维数有限,则任意R-模是Gorenstein FCn-投射模当且仅当任意循环R-模是Gorenstein FC...  相似文献   

8.
设R是任何环,L是R-模.若对任何平坦维数有限的模M,有Ext_R~1(M,L)=0,则L称为强余挠模.证明(F_∞,SC)是余挠理论当且仅当l.FFD(R)∞,其中F_∞和SC分别表示平坦维数有限的模类和强余挠模类.还证明若w.gl.dim(R)∞,则强余挠模是内射模.最后证明每一R-模是强余挠模当且仅当R是左完全环,且l.FFD(R)=0.  相似文献   

9.
设R是环,n和d是固定的非负整数,T是1-倾斜R-模(未必有限生成).称R-模M是(n,d)-T-内射模,如果对任意P∈Pr esnT,有ExtdR+1(P,M)=0.称R-模M是(n,d)-T-投射模,如果对任意(n,d)-T-内射模N,有ExtlR(M,N=0.给出(n,d)-T-内射模与(n,d) -T-投射模的...  相似文献   

10.
研究了w-平坦模与w-投射模的直和性质,分别给出了PVMD与w-平坦模、Krull整环与w-投射模之间的关联.此外,讨论了正合列中的w-平坦模.证明了若R是整环,0→N→F→M→0是无挠R-模正合列,其中N,F是平坦模,则M是w-平坦模当且仅当对R的任何w-理想I,N∩IF=IN,当且仅当对R的任何有限型w-理想I,N∩IF=IN.  相似文献   

11.
设R是任何环,D是右R-模.若对任何平坦维数有限的左R-模M,有Tor_1~R(D,M)=0,则D称为强无挠模.强无挠模对Gorenstein环的研究发挥了重要的作用.为了对强无挠模作进一步刻画,首先证明(D_∞,F_∞)是Tor-挠理论当且仅当1.FFD(R)∞,其中,D_∞和F_∞分别表示强无挠右R-模类和平坦维数有限的左R-模类.还证明每一右R-模是强无挠模当且仅当1.FFD(R)=0.最后证明若1.FFD(R)∞,则1.FFD(R)=stf.dim(R),其中stf.dim(R)表示环R的(右)整体强无挠维数.  相似文献   

12.
本文引入了分次单内射模的概念。设R是分次环,分次R-模N称为分次单内射模,是指对任何分次单R-模S,有EXT1R(S,N)=0。也给出了分次单内射模的系列等价刻画,证明了若R是左分次Artin环,或R是分次Krull维数不超过1的分次Noether环,则分次模E是分次内射模当且仅当E是分次单内射模。  相似文献   

13.
G_χI-内射模     
利用Gχ-内射模引入了一种新的模类G_χI-内射模.如果对任意的Gχ-内射模N,有Ext1R(N,M)=0,称左R-模M是G_χI-内射模.之后讨论了这类模的一些同调性质,并且探索了Gχ-内射模、内射模与G_χI-内射模之间的关系.而且利用G_χI-内射模给出了半单环的一个新刻画,每个左R-模是强G_χI-内射的当且仅当每个Gχ-内射左R-模是投射的当且仅当R是半单环.我们还讨论了模的G_χI-内射维数,给出了该维数的一些等价刻画.  相似文献   

14.
利用非交换环上的无挠模的概念,引入TF-投射模,也定义相应的同调维数.称左R-模M为TF-投射模,是指对任何无挠模T,都有Ext1R(M,T)=0.讨论TF-投射模与D-平坦模的关系,证明TF-投射整体维数为0的环都是QF环.最后,用TF-投射模维数刻画右强P-凝聚左Noether环.  相似文献   

15.
设R是任何环,模D称为P∞-内射模,是指对任何投射维数有限的模P,有Ext1R(P,D)=0.证明了(P∞,D∞)构成一个余挠理论当且仅当l.FPD(R)∞,其中P∞表示投射维数有限的模类,D∞表示P∞-内射模类;还证明了若l.gl.dim(R)∞,则每个P∞-内射模是内射模;最后证明了每个R-模是P∞-内射模当且仅当l.FPD(R)=0.  相似文献   

16.
交换环上的极大性内射模   总被引:3,自引:2,他引:1  
设R是交换环,■表示R的极大理想生成的乘法系,M是R-模.若对R的任何极大理想m,有ExtR1(R/m,M)=0,则M称为极大性内射模.若R自身为极大性内射模,则R称自极大性内射环.若对J∈■,x∈M,由Jx=0能推出x=0,则M称为■-无挠模.证明了在Dedekind整环上,M是极大性内射模当且仅当M是内射模.指出若R的极大理想都是有限生成的,则每个■-无挠模存在极大性内射包络.还证明了若R是■-无挠的自极大性内射模,则自反模是极大性内射模,且非极大素理想都是极大性内射模;若还有R的每个极大理想是有限生成的,则自由模与投射模是极大性内射模.最后,证明了在MFG整环上,平坦模是极大性内射模.  相似文献   

17.
设R是MFG整环,S表示R的极大理想生成的乘法系.R-模M称为几乎投射模,是指对任何无挠的ε-模N,Ext1R(M,N)是S-挠模.证明了ε-有限生成模M是几乎投射模当且仅当对R的任何次极大素理想P,MP是自由RP-模.同时证明了ε-有限生成的几乎投射模是ε-有限表现模,ε-有限生成的几乎投射的ε-模一定是自反模.  相似文献   

18.
设SCR是一个半对偶双模.讨论了关于半对偶双模C的强FP-内射模和强FP-投射模,它是FP-内射模和FP-投射模的一个推广.利用环模理论和同调代数的方法,研究了强C-FP-内射模与强C-FP-投射模的若干性质和等价刻画.并证明了模RU是强C-FP-内射模当且仅当U∈AC(R)且CRU是强FP-内射左S-模;模RU是强C-FP-投射模当且仅当ToriR?1(C,U)=0且CRU1sfI(S),其中AC(R)表示关于半对偶双模C的Auslander类,sfI(S)表示强FP-内射左S-模组成的子范畴.  相似文献   

19.
设R是交换环,U表示R的极大w-理想生成的理想乘法系.引入U-无挠模和U-内射模的概念,举例说明U-内射模未必是内射模,证明U-无挠的R-模M是U-内射模当且仅当对任何正合列0→M→F→C→0,若F是U-内射模,则C是U-无挠模.证明若R是唯一分解整环,则肘是U-内射模当且仅当M是F_w(R)-内射模.也证明了若R是Krull整环,M是w-模,则M是内射模当且仅当M是U-内射模.  相似文献   

20.
本文证明了如下结果:(1)右强FC环为左FGF环;左FP—内射的左FGF环为右强FC环;(2)左FGF环为半单环或lD(R)=∞;(3)若单右R—模的内射闭包为f—投射模,则f.g.右R—模为无挠模;(4)左R—模M为f—投射模的充要条件是对任意f.g.左R—模P,自然映射:P~*(?) M→hom_R(P,M)为满同态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号