首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
CeO2—ZrO2与Y2O3—ZrO2两相复合材料增强,增韧性能   总被引:1,自引:0,他引:1  
以化学共沉淀法所得超细粉为原料,设计两相复合材料的微观结构,讨论了材料的增强,增韧机理。结果表明,该材料具有很好的增强,增韧性能。经1550℃,4h烧成的材料,测得其抗弯强度为901MPa,断裂韧性为14.30MPa.m^1/2。  相似文献   

2.
ZrO_2增韧Al_2O_3/SiCw陶瓷复合材料研究   总被引:2,自引:1,他引:2  
研究了热压烧结Al2O3+0.20SiCw(体积分数,下同)-ZrO2(摩尔分数为0.02Y2O3,记为ZrO2(0.02Y))陶瓷复合材料的力学性能及韧化机制。结果表明,在Al2O3+0.20SiCw陶瓷中添加ZrO2(0.02Y)颗粒可使Al2O3+0.20SiCw材料进一步韧化和强化;室温下Al2O3+0.20SiCw+0.30ZrO2(0.02Y)复合材料的断裂韧性和抗弯强度分别可达10.85MPa·m1/2和1207MPa。断口形貌和裂纹扩展途径的SEM观察和XRD分析结果表明,复合材料的增韧机制为裂纹偏转与绕过,晶须桥接与拔出以及相变增韧,并且晶须增韧与相变增韧具有良好的叠加性  相似文献   

3.
研究了热压烧结SiC晶须(SiCw)增强Y-TZP陶瓷基复合材料的力学性能及增韧机理。结果表明,在SiC晶须分散均匀的情况下,晶须含量达15vol%时,复合材料的力学性能优于基体材料的力学性能。当SiCw含量为10vol%时,复合材料的强度和断裂韧性分别为1036.9±15.1MPa和14.01±0.16MPa·m(1/2)。晶须引起的裂纹偏转、晶须拔出和由ZrO2相变引起的孪晶是该复合材料的主要增韧方式。  相似文献   

4.
研究了在ZrO2含量在15wt%晶须含量对Al2O3/TiN/ZrO2/SiCw复合材料的显微结构与力学性能的影响。当SiCw含量由10wt%增加到30wt%时,弯曲强度σf和断裂韧性KIC最高可达1134MPa和12.26MPa.m^1/2。用SEM,TEM观察分析了复合材料的表面抛光组织,断口形貌和微观结构。试验结果表明,复合材料强韧化机制主要为晶拔拔出,相变增韧,裂纹偏转和晶须与基体界面解高  相似文献   

5.
研究了热压纳米ZrO2粒子强韧MoSi2基复合材料的显微结构与力学性能,初步探讨了纳米ZrO2粒子的增韧补强机制.结果表明,复合材料的室温断裂韧性有了较大的提高,KIc达到5.79MPa·m1/2.SEM观察表明纳米ZrO2粒子既分布于基体材料的晶界同时也存在于晶粒内部,断口形貌呈现出沿晶与穿晶的混合型断裂特征.复合材料的韧化效应是由ZrO2粒子引起的相变韧化、晶粒桥接以及裂纹偏转等机制的综合作用.  相似文献   

6.
研究了LCASSiCwZrO2 复合材料的力学性能及其微观结构.力学性能分析表明:SiCw 增韧和ZrO2 相变增韧的加和性不是简单地叠加,SiCw 增韧提高了ZrO2 相变增韧效果.体积分数分别为55 % ,30% ,15% 的LCAS,SiCw ,ZrO2 复合材料的断裂韧性K1C和抗弯强度σb 达到6-4 MPa·m1/2 和331-7 MPa.透射电镜(TEM) 图象表明:复合材料中ZrO2 起了应力诱导相变增韧作用;LCAS/SiCw 界面较清晰,其宽度约15 nm ;搭在LCAS/SiCw 界面两侧的杆状TiC 颗粒增加了界面结合强度  相似文献   

7.
Y-TZP和氮气压力对GPSSi_3N_4性能的影响   总被引:1,自引:0,他引:1  
本文研究了Y-TZP(3mol%Y2O3)和氮气压力对GPSSi3N4陶瓷材料的烧结性能和力学性能、相组成及微观结构的影响,添加5wt%、10wt%、15wt%、20wt%Y-TZP的氨化硅复合材料在1770~1800℃,氮气压力分别为1MPa、2MPa、3MPa下烧成,获得相对密度>95%的烧结体。实验结果表明:添加<10wt%的Y-TZP及增大氮气压力有利于改善氰化硅陶瓷材料的烧结性能;Y-TZP可提高Si3N4基体的断裂韧性,添加15wt%TZP的Si3N4材料断裂韧性可达8.33MPam1/2,与基体相比提高30%,微裂纹增韧和第二相粒子增韧为主要增韧机理.  相似文献   

8.
研究了热压烧结Al2O3/nano-SiC复相陶瓷的力学性能及显微结构。研究表明,纳米SiC的引入显著地改善了材料的力学性能,在SiC添加体积分数为10%时,Al2O3/nano-SiC复相陶瓷抗弯强度σf达峰值为869MPa,断裂韧性KIc也达峰值为6.7MPa·m0.5,比纯Al2O3基体材料分别提高138%和81%。TEM观察表明:纳米SiC晶粒主要存在于Al2O3基体晶粒内部,形成独特的“晶内型”结构。当受外力作用时,既能因弥散的纳米颗粒诱发穿晶断裂,且穿晶断裂时,还能因晶内存在第二相颗粒而引起裂纹偏转,起到增强增韧作用。  相似文献   

9.
冯维明  陈芝 《山东科学》1997,10(2):46-49
本文热压烧结制备了ZrO2/TiN/Al2O3复合材料。用SEM、TEM观察了复合材料表面抛光组织、断口形貌、裂纹扩展和微观结构。研究了ZrO2含量对复合材料的力学性能的影响。当ZrO2含量增加到20wt%时,弯曲强度σf和断裂韧性KIC最高可达989MPa和10.84mMPa.m^1/2。实验结果及分析表明,ZrO2/TiN/Al2O3复合材料的增韧机理主要为ZrO2相变、裂纹偏转及TiN颗粒弥  相似文献   

10.
制备了以MDF水泥为基体的尼龙纤维增强复合材料并对其力学性能进行了测试,结果表明在MDF水泥基体中加入一尼龙纤维可以有效地提高材料的抗冲击性能,当复合材料中尼龙纤维含量为体积分数 ̄2%时,材料的冲击强度即可达14.25kJm^-2,变曲强度81.2MPa,并对纤维增韧机理以及断裂特性进行了探讨。  相似文献   

11.
设D1,D2是无平方因子正整数.该文给出了方程组x2-D1y2=2s2和x2-D2y2=-2t2有本原整数解(x,y,s,t)的必要条件.  相似文献   

12.
为深入了解非晶态Co-Fe-B合金的性质,本文从能量学视角,对团簇Co2FeB2和CoFe2B2各构型所占比例定量分析,探究其稳定性,发现团簇Co2FeB2的结合能和吉布斯自由能变化量随构型能量增加出现剧变点,临界能量约为463.061a.u,主要存在构型为能量低于临界值的两种戴帽三角锥和一种四角锥构型。团簇CoFe2B2的结合能和吉布斯自由能变不存在剧变点,有多种异构体共存。高Co含量的团簇有较小的结合能和吉布斯自由能变化量,稳定性弱,此结论符合相关文献报道。  相似文献   

13.
在 1 0~ 80 0K的温度范围内用X射线衍射方法测量了SmMn2 Ge2 和GdMn2 Ge2 的晶格常数与温度的变化关系 .实验结果表明 :在各种类型的自发磁相变温度处观察到晶格常数的磁弹性异常现象 ;Mn Mn间的交换相互作用能不仅与晶格常数a有关 ,而且与晶格常数c有关 .此外 ,在 2 7T的脉冲强磁场中测量了SmMn2 Ge2 及GdMn2 Ge2 的磁致伸缩 ,在这 2种化合物中观察到了场诱导的一级磁相变 .  相似文献   

14.
利用Tang Toennies(TT)势模型,计算了O2-O2,O2-N2,和O-N2相互作用势,得到了重要的的相互作用势的参数Rm和ε,并在此基础上计算了O2-O2系统的输运系数.其结果与文献值符合较好,说明TT势模型对于计算氧分子系统是可行的.  相似文献   

15.
在近室温下通过固相反应合成ZnC2 O4·2H2 O和CuC2 O4·2H2 O纳米超细化合物 ,用X射线粉末衍射 (XRD)和透射电子显微镜 (TEM)对其物相、晶粒形貌和晶粒大小进行了表征 .结果表明 ,所得产物为颗粒大小均匀、平均粒径分别为 30nm和 4 0nm左右的纳米粉体  相似文献   

16.
用连续进样预富集分离硫化物与二氧化硫, 并用分子吸收光谱进行测定. 考察各实验参数对测定结果的影响.  相似文献   

17.
在无溶剂和催化剂的条件下,以卤代酮和硫脲或取代硫脲为原料,于100℃反应5~15 min,合成了2-氨基噻唑及2-甲基噻唑类衍生物.在明显减少硫脲或取代硫脲用量的基础上,使产物的收率达到了85%~98%.此方法具有反应条件温和、操作简单、反应时间短和收率高等特点.  相似文献   

18.
对于不定方程组{x~2-2y~2=1 2y~2-3z~2=4和{x~2-2y~2=1 2y~2-5z~2=7证明了它们没有整数解.  相似文献   

19.
标题化合物分子式为C8H28Cl4Cu2N6O,属单斜晶系,空间群为 P21/m,a = 6.721(1) 牛琤 = 14.606(2) 牛琧 = 10.304(1) ,b = 95.26(1),体积为1007.3(2) ?,Z = 4,R1 = 0.0323,wR2(F2) = 0.0473,T = 296 K。  相似文献   

20.
用紫外-可见光谱法,在-13~25℃范围内考察Pd2Cl2(dpm)2,la,(dpm=Ph2PCH2PPH2)与H2S的CH2Cl2中反应的动力学。测试显示反应速率与la的浓度呈一级关系,在较低H2S浓度下与H2S浓度呈一级关系,在高H2S浓度下则与H2S浓度无关。这些现象可解释为:首先由la与H2S作用生成中间体la'并快速与反应物达到平衡,随后la'再分解为产物Pd2Cl2(dpm)2(μ-  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号