首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 281 毫秒
1.
为了应对传统延时锁相环(Delay locked loop,DLL)的谐波锁定问题,提出一种结合施密特频率选择器的DLL型90°移相器.采用施密特频率选择器和双数控延时线结构,有效提高该移相器的锁定频率范围.另外,提出的施密特频率选择器能有效抑制输入时钟频率噪声,使移相器稳定工作.在SMIC 55 nm CMOS工艺下流片,工作电压1.2 V,版图有效面积为0.131 mm2.测试结果表明,提出的移相器在250 MHz到800 MHz频率范围内稳定工作;800MHz时,功耗为5.98 mW,且90°相移时钟的抖动峰峰值和均方根值分别是25.9 ps和2.8 ps.  相似文献   

2.
针对高速(Gb/s)串行数据通信应用,提出了一种混合结构的高速时钟数据恢复电路.该电路结构结合鉴频器和半速率二进制鉴相器,实现了频率锁定环路和相位恢复环路的同时工作.电路采用1.8 V,0.18μmCMOS工艺流片验证,面积约0.5 mm2,测试结果显示在2 Gb/s伪随机数序列输入情况下,电路能正确恢复出时钟和数据,核心功耗约为53.6 mW,输出驱动电路功耗约64.5 mW,恢复出的时钟抖动峰峰值为45 ps,均方根抖动为9.636 ps.  相似文献   

3.
提出了一种基于行为级的锁相环(PLL)抖动仿真方法.分析了压控振荡器的相位噪声、电源和地噪声以及控制线纹波对输出抖动的影响.采用全摆幅的差分环路振荡器、全反馈的缓冲器以及将环路滤波器的交流地连接到电源端等措施,减小了PLL的输出抖动.给出了一个采用1st silicon 0.25μm标准CMOS工艺设计的250 MHz时钟产生电路中低抖动锁相环的实例.在开关电源和电池供电2种情况下,10分频输出(25 MHz)的绝对抖动峰峰值分别为358 ps和250 ps.测试结果表明该行为级仿真方法可以较好地对PLL的输出抖动做出评估.  相似文献   

4.
为了缓解多通道SerDes中高频时钟信号在长距离传输中引入的噪声过大和功耗过高的问题,设计了一种应用于多通道的低功耗低抖动两级锁相环结构;同时为了进一步降低噪声性能,在第2级锁相环中设计了一种采样鉴相器。该设计将第1级LC振荡器锁相环产生的低频时钟信号(3.125 GHz)传输到各通道收发机后,将该信号作为第2级参考信号,再采用小面积的环形振荡器锁相环产生正交的高频时钟 (12.5 GHz),这种结构降低了高频时钟在片上长距离传输的距离,提高了收发机的时钟质量;此外该技术避免了使用高频缓冲器,降低了功耗。其中第2级锁相环通过无分频鉴相技术提高了第2级环振锁相环的噪声性能。该时钟发生器电路整体功耗为100 mW,第1级锁相环相位噪声拟合后为-115 dBc/Hz,第2级环形振荡器电路在1 MHz处相位噪声为-79 dBc/Hz,锁相环电路产生的时钟信号整体抖动为2.7 ps。正交时钟偏差在300 fs以内。相比传统时钟发生器,该设计性能有较大提高,功耗有明显降低,适合应用于100 Gbps SerDes中。  相似文献   

5.
面向高速串行接口应用,设计一款低噪声、快速锁定的高性能锁相环电路,作为5 Gbit· s-1数据率的SerDes发射芯片的时钟源。该设计通过锁存RESET方式增加延迟时间,以减小鉴频鉴相器的死区效应,降低锁相环整体电路的杂散;其压控振荡器采用4 bit二进制开关电容的方法,将输出频率划分为16个子频带,以获得较大的输出频率范围,同时又不增加压控振荡器的增益;在SMIC 55 nm工艺下完成锁相环电路版图设计,核心芯片面积为054 mm2。后仿真结果表明:输出频率覆盖46~56 GHz,1 MHz频偏处的相位噪声在-110 dBc·Hz-1 附近。测试结果显示,RMS 抖动和峰峰值抖动分别为287 ps和134 ps,整体电路功耗为37 mW。  相似文献   

6.
设计了一种嵌入于FPGA芯片的锁相环,实现了四相位时钟、倍频、半整数可编程分频、可调节相位输出功能,满足对于FPGA芯片时钟管理的要求.锁相环采用了自偏置结构,拓展了锁相环的工作范围,缩短了锁定时间,其阻尼系数以及环路带宽和工作频率的比值都仅由电容的比值决定,有效地减小了工艺、电压、温度等对电路的影响.锁相环采用0.18μm CMOS数字工艺,嵌入复旦大学自主研发的FPGA芯片FDP-Ⅱ,经过流片验证,实现了工作频率范围10~600 MHz,整体电路功耗仅为29 mW,锁定时间小于4μs,峰峰值抖动小于±145 ps.  相似文献   

7.
文章设计了一款完全集成的高性能4阶电荷泵锁相环.根据系统性能要求,该锁相环的环路滤波器选用3阶无源低通滤波,其他模块在典型结构的基础上采取了改进措施以获得高性能.首先,利用MATLAB进行系统建模,获得锁定时间和环路参数;然后给出了关键电路的结构以及前、后仿真的结果.在SMIC0.35μm 2P3M CMOS工艺条件下,该锁相环的正常工作范围为60~640 MHz,400 MHz时周期到周期抖动为96 ps,面积为0.38 mm2.内嵌本电路的一种DAC芯片已交付数据,成功参加MPW项目流片.  相似文献   

8.
为满足锁相环电路高稳定性、低功耗的要求,提高其整体性能,通过对普通型电荷泵锁相环电路模块的改进,设计了一种高性能差分型电荷泵锁相环。该电路包括鉴频鉴相器、分频器、差分电荷泵和压控振荡器的电路结构。仿真结果表明:该差分型电荷泵锁相环的锁定时间为10μs、频率抖动为0.0002MHz、周期抖动为2 ps,与普通型电荷泵锁相环相比,可达到快锁低抖的目的。  相似文献   

9.
提出了一种基于层次化无缓冲谐振时钟网络的耦合时钟阵列结构,能够有效分布全局时钟,并实现局部时钟网络的频率及相位锁定.基于耦合振荡器理论,详细分析了耦合网络的电压幅值、频率锁定及耦合网络带宽特性,并通过SPICE模拟,对影响谐振时钟阵列耦合特性的关键因素进行了研究,包括时钟负载差异、能量补偿单元、以及耦合网络等.模拟结果表明,谐振时钟阵列具有较宽的频率锁定范围,在耦合特性发生变化的情况下,全局时钟偏斜最大为21 ps,小于时钟周期的2%.  相似文献   

10.
设计了一款应用于超宽带无线收发器中的低抖动、低功耗、多相位输出、输出频率为528MHz和132 MHz的锁相环,包括了高频特性好的鉴频鉴相器、低电压抗抖动的电荷泵、经典的低电压对称负载差分延迟单元以及duty-buffer的双转单电路等.设计采用SMIC 0.13μm CMOS工艺,电源电压1.2 V.对电路进行了电路级仿真和系统级稳定性分析,并完成了版图设计和后仿.根据后仿结果,在TT@75℃、振荡频率为528 MHz情况下,周期抖动的p2p值为1 ps,功耗仅为4 mW.  相似文献   

11.
设计了一款应用于光通信28Gb/s非归零码高速串行接收机的快速锁定、低抖动时钟数据恢复电路。为了解决时钟抖动性能和锁定时间难以兼顾的问题,在比例-积分通路分离的电路结构中,提出了锁定检测判别技术,实现了比例通路增益的可调节,使得环路能够在低抖动的情况下快速锁定。通过Cadence Spectre进行仿真,当环路中使用锁定检测判别技术时,锁定时间为400ns,抖动峰峰值为2.5ps。相较于未使用该技术的环路,锁定时间缩短了33%,抖动降低了40%。  相似文献   

12.
为了解决光模块中高功耗芯片恶化激光调制器性能,以及解决收发端时钟基准偏差导致误码率高的问题,设计了一款低功耗高抖动容限的时钟数据恢复电路(CDR)。通过采用压控振荡器(VCO)型全速时钟的CDR系统架构和电感峰化的时钟缓冲技术,降低了CDR芯片的功耗;通过在CDR积分通路中引入零点补偿电阻,提高了CDR的抖动容限。该CDR采用CMOS 65 nm工艺设计和1.1 V电源供电,后端仿真结果表明:当CDR电路工作在28 Gbps时,功耗是2.18 pJ/bit,能容忍的固定频差是5 000 ppm,恢复时钟的抖动峰峰值是5.6 ps,抖动容限达到了设计指标,且满足CIE-25/28G协议规范。  相似文献   

13.
同步数字系列 ( SDH)指针调整给支路时钟带来了幅度很大的低频抖动 ,一般的时钟同步恢复方法 (如简单的模拟或数字锁相环 )已无法将其滤除 ,为恢复 SDH中基群时钟同步 ,提出了一种新的全数字化方法——统计预测法。该方法通过对一个统计周期内欲平滑时钟与参考时钟的差异的统计 ,在下一个周期内预测出支路时钟。从该方法的原理、抖动性能的分析以及给出的计算仿真结果和实验测试结果可知 ,该方法可以有效地平滑由于指针调整和码速调整产生的很大的相位跃变 ,恢复的时钟抖动很小 ,有很好的抖动转移特性和很大的捕捉范围 ,且不需要锁相环 ,系统便于集成 ,有利于设备的小型化。  相似文献   

14.
基于硅基天线和电磁波传输的无线互连技术,设计实现了一种面向微处理器的无线时钟分布发射器电路,包括一个长2.6 mm、宽30 μm、集成在硅衬底(电阻率为10 Ω·cm)上的偶极折叠天线、高频锁相环、驱动和匹配电路.其中,硅基折叠天线提高了芯片的面积利用率,并通过在硅衬底与散热金属之间引入金刚石介质来提高折叠天线的传输增益.同时,为了减小信号传输功率的损失,在电路与硅基天线之间进行了阻抗共轭匹配,设计实现了中心工作频率11 GHz的低噪声锁相环,在频率偏移为3、10 MHz处的相位噪声分别达-116、-127 dBc/Hz.结果表明,所设计的发射器有效面积为0.85 mm2,能够提供低抖动、稳定的高频全局时钟源.  相似文献   

15.
采用标准0.18 μm CMOS工艺,设计了一种高锁定范围的半盲型过采样时钟数据恢复电路.该时钟数据恢复电路(Clock and Data Recovery,CDR)主要由鉴频器(Frequency detector,FD)、多路平行过采样电路、10位数模转换器(Digital To Analog Converter,DAC)、低通滤波器(Low Pass Filter,LPF)、多相位压控振荡器(Voltage Controlled Oscillator,VCO)等构成.该CDR电路采用模数混合设计方法,并提出了基于双环结构实现对采样时钟先粗调后微调的方法,并且在细调过程中提出了加权调相的方法缩短采样时间.仿真结果表明,该CDR电路能恢复1.25~4.00 Gbps之间的伪随机数据电路,锁定时间为2.1 μs,VCO输出的抖动为47.12 ps.  相似文献   

16.
介绍了一种实现HDMI中数字视频信号接收的方法,设计并实现了一种新的用于HDMI中像素数据和时钟信号恢复的电荷泵锁相环;通过V-I电路的改进降低了压控震荡器的增益,改善了控制电压的波动对压控震荡器频率的影响,从而减小时钟抖动;采用频率检测电路对输入时钟信号频率进行自动检测分段,可实现大的频率捕获范围,从而实现了对高达UXGA格式的数字视频信号接收;采用Hspice-RF工具对压控震荡器的抖动和相位噪声性能进行仿真,SMIC0.18μsCMOS混合信号工艺进行了流片验证,测试结果表明输入最大1.65Gbit/s像素数据信号条件下PLL输出的时钟信号抖动小于200ps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号