首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
基于TSMC 0.18μm CMOS工艺,设计了一种低噪声、高增益的混频器.通过在吉尔伯特单元中的跨导级处引入噪声抵消技术以降低混频器的噪声,并且在开关管的源级增加电流注入电路以减小本振端的偏置电流,增大电路的增益.仿真结果表明,混频器工作电压为1.8 V,直流电流为9.9 mA,在本振(LO)频率为2.39 GHz,射频(RF)频率为2.4 GHz时,混频器的增益为12.65 dB,双边带噪声系数为4.23 dB,输入三阶交调点为-3.45 dBm.  相似文献   

2.
采用LC-tank折叠结构设计了一种低电压高线性度的混频器,解决了传统Gilbert混频器中跨导级与开关级堆叠带来的高电压高功耗问题,以及在跨导级的高跨导、高线性与开关级的低噪声间进行折中设计难题.基于TSMC 0.25 μm工艺,Agilent公司的ADS软件对所设计混频器电路进行了仿真.其仿真结果表明:工作电压1.0 V,RF频率2.5 GHz,本振频率2.25 GHz,中频频率250 MHz,转换增益1.080 dB,三阶交调点25.441 dBm,单边带噪声系数4.683 dB,双边带噪声系数8.387 dB,功耗7.088 mW.  相似文献   

3.
采用130 nm CMOS工艺,设计一种工作频率在94 GHz的高频无源混频器.该混频器为单平衡式结构,主要采用具有良好高频特性的肖特基势垒二极管与互补型传导传输线(CCS-TL)来实现.电路主要分为三部分:环形波导耦合器(Rat-race coupler),反向并联二极管对,低通滤波器.输入本振信号频率94 GHz,射频信号频率94.1 GHz,输出中频信号频率100 MHz.在电路直流偏置电压为0.5 V,本振信号PLO=0 dBm时,混频器的变频损耗为17 dB,P_(LO)=10 dBm,变频损耗为14.6 dB.经测试LO端口与RF端口的回波损耗分别为-13.4 dB,-16.7 dB,LO与RF的隔离度为26.2 dB.  相似文献   

4.
本文设计了一款应用于超高频射频识别标签的分裂低噪声跨导放大器的电流模无源混频器.这款电流模无源混频器的功耗低至2.2mW,包含跨阻放大器.在利用50%占空比本振信号的电流模无源混频器中,分裂的低噪声跨导放大器能够解决I/Q 2路镜像信号相互串扰的问题.因此,本文设计的电流模无源混频器能够继续利用50%占空比的本振信号,而不需要利用额外的电路将本振信号的占空比从50%变成25%,这样能够节省大量的功耗和面积.无源混频器前的阻抗匹配网络具有额外的电压增益,额外的电压增益能够抑制后级电路的噪声贡献,这有助于进一步节省无源混频器的功耗.这款无源混频器在SMIC 130nm CMOS工艺下流片.测试结果表明,无源混频器的电压转换增益为32.1dB,噪声系数为7.7dB,带内输入3阶交调点为-9.1dBm,功耗为2.2mW.芯片面积为0.32mm2.  相似文献   

5.
针对吉尔伯特混频器电路转换增益和线性度低的问题,设计了一个高转换增益、高线性度下变频有源混频器,其电路跨导级采用电流镜结构和第三阶跨导系数消除结构,通过设置晶体管工作在不同的区域,使得晶体管的第三阶跨导系数相互消除,以提高电路的转换增益和线性度。电路采用TSMC 0. 18μm RF CMOS工艺。Cadence Spectre-RF软件仿真结果表明,在工作电压为1. 2 V、射频频率为5. 2 GHz、本振频率为5 GHz、中频频率为200 MHz时,所设计的混频器电路的转换增益为21. 9 d B,噪声系数为16. 5 d B,线性度(输入三阶交调点IIP3)为21. 68 d Bm,功耗为2. 3 m W,转换增益由典型指标10 d B提升至21. 9 d B,线性度由典型指标5 d Bm提升至21. 68 d Bm。可见,所设计的混频器电路的转换增益和线性度得到有效改善。  相似文献   

6.
对带有源负载的CMOS双平衡Gilbert有源混频器的1/f噪声、线性度与转换增益进行深入分析。这款采用PMOSFETs做负载的混频器工作于2.4 GHz频段。为降低混频器的1/f噪声, 利用双阱工艺中的寄生垂直NPN晶体管作为开关, 同时在PMOSFETs处并联最低噪声的分流电路作为负载。运用在PMOSFETs处的高性能运算放大器, 不仅为零中频输出提供了合适的直流偏置电压, 以避免下级电路的饱和, 并能够为混频器提供足够高的转换增益。同时, 在输入跨导(Gm)级电路中采用电容交叉耦合电路能够将转换增益进一步提高。为了增加混频器的线性度, 采用共栅放大器作为输入跨导级电路。这款混频器采用TSMC 0.18m 1-Poly 6-Metal RF CMOS工艺, 在1.5 V电源电压、3 mA的电流消耗下获得了17.78 dB的转换增益、13.24 dB的噪声因子和4.45 dBm输入三阶交调点的高性能。  相似文献   

7.
介绍了一种基于IHP 0.13 μm SiGe BiCMOS工艺,具有高本振(Local Oscillator, LO)/射频(Radio Frequency, RF)及本振/中频(Intermediate Frequency, IF)端口隔离度的太赫兹基波上混频器.该混频器采用了吉尔伯特双平衡结构,本振信号通过共面波导(Coplanar Waveguide, CPW)传输来抑制其在传输过程中由于强寄生耦合效应造成的传输不对称性,削弱了由该不对称性造成的LO/RF端口隔离度恶化的特性.通过采用非对称性的开关互联结构降低本振信号在开关晶体管集电极端寄生耦合的不平衡性,提升本振信号在开关晶体管集电极端的对消效率,通过在版图中合理布局跨导级晶体管的位置来抑制本振信号在中频端口的泄露.后仿真结果表明:在2.2 V电源电压下,本振信号为230 GHz,中频信号为2 ~ 12 GHz,该上混频器工作在218 ~ 228 GHz时,LO/RF端口隔离度大于24 dB, LO/IF端口隔离度大于20 dB,转换增益为-4 ~ -3.5 dB.当中频信号为10 GHz时,输出1 dB压缩点为-14.8dBm.电路直流功耗为42.4 mW,芯片的核心面积为0.079 mm2.该上混频器可应用于采用高阶正交幅度调制(Quadrature Amplitude Modulation, QAM)方式的无线发射系统.  相似文献   

8.
设计了一种应用于X波段本振移相的新型矢量合成移相器,该新型矢量合成移相器主要由4个3bit的子移相器组成,可以实现5bit的移相精度.该移相器降低了对可变增益放大器(Variable Gain Amplifier,VGA)的精度要求.可变增益放大器的可变增益通过一组开关控制增益单元来实现,从而避免了传统正交矢量合成移相器中VGA偏置电流改变造成的线性度波动和漏源波动问题,故应用于本振移相时可以实现较小的移相增益误差和相位误差.为了验证该移相器的本振移相性能,设计了一个混频器作为测试电路.本设计采用0.13μm CMOS工艺实现,电源电压为1.2V.测试结果表明,在9~12GHz内,混频器在本振移相器驱动下的平均转换增益为-0.5~7dB,移相器的移相精度为5bit,均方根增益误差最大值为0.8dB,均方根相位误差最大值为4°.直流功耗为40mW.  相似文献   

9.
基于SMIC 0.18.μm CMOS工艺,设计了一种应用于超高频(UHF)射频识别(RFID)系统零中频接收机的混频器.在对传统吉尔伯特混频器的噪声指标进行深刻分析的基础上,采用动态电流注入技术,设计出了一种低噪声、高线性度的混频器.动态注入电路有选择地向跨导级注入适当电流,大大抑制了开关管中的闪烁噪声,从而提高了混频器的整体噪声性能,同时又不影响混频器的线性度.在1.8V电源电压下,仿真显示,该混频器取得11.3dB的噪声系数、-5.58 dBm的输入l dB压缩点、26.04 dB的转换增益.芯片仅消耗7.2 mW功耗,占用404 μm*506 μm芯片面积.  相似文献   

10.
提出了一种新型的应用于直接变频超宽带接收机中的低压折叠开关混频器.给出了混频器电路拓扑结构,输入宽带匹配网络采用并联电阻的形式,跨导级采用电流复用技术的CMOS反相器,跨导级和开关级通过电容交流耦合,用LC谐振网络替代传统电流源.分析了改善混频器线性度、增益和噪声性能的方法.使用中芯国际0.13 μm CMOS工艺制造芯片,测试结果表明,在电源电压为1 V,功耗为5.1 mW时,得到了非常好的线性度,输入三阶互调截点(IIP3)为10.20 dB(mW量级),同时功率增益为-4.2 dB,单边带噪声系数为12.8 dB.  相似文献   

11.
基于TSMC 90nm CMOS工艺,设计实现K波段片上集成CMOS接收前端。接收前端由两级差分共源共栅结构低噪声放大器、双平衡吉尔伯特单元结构下变频混频器组成。射频输入、本振输入以及模块间采用片上巴伦进行匹配。测试结果表明,在射频输入频率23.2GHz时,转换增益为27.6dB,噪声系数为3.8dB,端口隔离性能良好,在电源电压为1.2V下,功耗为35mW,芯片面积为1.45×0.60mm2。   相似文献   

12.
基于吉尔伯特型的CMOS射频混频器的设计   总被引:1,自引:0,他引:1  
采用多晶电阻作为输出负载、开关对的源极注入电流、共源节点串联电感、驱动级的源简并阻抗方法,提出了一种新型的双通道正交混频器,并采用Candence完成了电路设计.仿真结果表明:在电源电压为1.8V,本振信号输入功率为3 dBm的时,混频器在1 MHz中频处的单边带噪声系数为7.47 dB,在100 kHz中频处为9.35 dB,在10 kHz中频处为16.39 dB;变频增益降为8.46 dB.提高了线性度,且其三阶交调点为8.42 dBm.  相似文献   

13.
设计了一种低电压、低功耗的新型混频器,主要应用于2.4 GHz ISM频段的无线通信系统中.先设计了一个2级放大器,再在2级放大器的中间插入1对吉尔伯特开关,就构成了一个基于放大器的混频器.混频器的供电电压为0.8 V,功耗为1.05 mW,三阶交调点为3.82 dBm,芯片面积为0.429 mm2.在7 dBm的本振信号下,混频器具有13 dB的转换增益.  相似文献   

14.
基于Fluent软件,采用VOF和DPM模型对振动混合器和叶轮搅拌器中轻浮颗粒的分散过程进行数值模拟,分析了颗粒分散效果的影响因素。结果表明,与叶轮搅拌相比,振动混合器在相同离底间隙的条件下,轻浮颗粒的下拉效果更好,消耗功率更少。  相似文献   

15.
使用TSMC0.18μmCMOS工艺实现3.1~8.0GHz超宽带接收机前端电路芯片设计,并利用ADS软件进行仿真、电路参数调整。电路架构包括:单端输入差动输出之超宽带低噪声放大器、Balun(Balance-unbalance)以及差动输入/输出的超宽带降频混频器,主要特点是在低噪声放大器输出端和混频器之间加入Balun,提升电路性能并减少芯片面积。芯片测试结果:在供给电压1.8V下,频宽为3.1~8.0GHz,S11〈-15。3dB,转换增益为24.6dB,功率消耗为37.98mW;包台接脚,芯片面积0.985(0.897×1.098)mm2。  相似文献   

16.
研究一种用于近程雷达的毫米波混频器设计,通过环行器来实现本振和信号的输入,环行器的功率分配可根据雷达的作用距离来进行设计。采用鳍线结构来实现混频器的匹配输入。经测试。当工作频率为30GHz时,变频损耗仅为6dB。  相似文献   

17.
提出了一种适用于低电源电压应用的混频器,其核心部分采用开关跨导形式,使得开关器件导通时的有限开态电阻引起的电压降减小到零,并在输出端采用折叠级联输出,降低了负载电阻引起的直流电压降,达到了在低电源电压下应用的目的.在1.3 V的电源电压下,电路仿真结果显示:转换增益为-11.5 dB,噪声系数为20.648 dBm,1 dB压缩点为-5.764 dBm,三阶交调失真点为4.807 dBm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号