首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以文蛤蛋白为原料,通过蛋白酶水解制备抗氧化活性肽.利用体外清除DPPH活性评价酶解产物的抗氧化活性,采用超滤、葡聚糖凝胶柱层析和HPLC对相应的活性肽进行分离纯化,通过HPLC-MS进行结构鉴定.结果表明:木瓜蛋白酶水解产物的DPPH清除活性明显高于碱性蛋白酶、风味蛋白酶、中性蛋白酶和复合蛋白酶,产物质量浓度为1 mg·mL-1时,DPPH清除率为55.74%;以DPPH清除率为筛选指标,对木瓜蛋白酶酶解产物进行逐级分离,得到4个具有抗氧化活性的目的肽段,氨基酸序列分别为LNFNLEKSR(1120.3 u)、SWLRPR(814.4 u)、RIGNIISQY(1063.3 u)和LNFNLEK(877.2 u).  相似文献   

2.
以抗氧化活性及蛋白质回收率为筛选指标对乳清蛋白肽酶解工艺进行优化,用层析柱对酶解液进行逐级分离纯化,并对其分子质量进行检测.研究结果表明:利用胰酶、复合风味蛋白酶、木瓜蛋白酶和碱性蛋白酶酶解制备乳清蛋白肽,最佳用酶为碱性蛋白酶、最适底物含量为4.0%、最适加酶量为8000U/g、最佳酶解时间为4h;酶解液经DEAE-52纤维素层析后得到的A组分抗氧化活性最好,其还原力为0.320 0±0.004 1,DPPH自由基清除率为6.58%±0.36%;A组分再经Sephadex G-15葡聚糖凝胶层析柱分离纯化后得到组分G,其DPPH自由基清除率为6.73%±0.083%;组分G的主要成分为分子质量378 u的肽段,其一级氨基酸组成为赖氨酸(Lys)、亮氨酸(Leu)及丝氨酸(Ser).  相似文献   

3.
以搅碎的兔肉末为原料,以超声辅助酶解制备抗氧化肽,对其抗氧化活性进行评价,发现抗氧化活性较好.比较不同酶制备的抗氧化肽的DPPH自由基清除率,从胰蛋白酶、碱性蛋白酶、中性蛋白酶、菠萝蛋白酶和木瓜蛋白酶中筛选出最佳用酶,利用单因素实验和响应面法优化了兔肉酶解的工艺条件.结果表明,酶解效果最好的是胰蛋白酶,在超声时间22.5 min,超声温度37℃,超声功率330 W的条件下酶解得到的抗氧化肽DPPH自由基清除率最好,为81.17%,与响应面优化实验回归模型的预测值基本一致;在此基础上制备兔肉抗氧化肽,对酶解液的ABTS、羟基自由基和超氧阴离子清除率进行检测,值分别为44.03%、94.69%和34.32%,均大于未酶解液.该研究可以为制备兔肉抗氧化肽方面提供理论依据和数据支持.  相似文献   

4.
为了获取独脚金多糖(DJPc)的最佳提取工艺条件,采用正交试验设计对水提醇沉法提取DJPc进行优化,并对DJPc进行GC分析和体外清除·OH自由基、DPPH·自由基活性的测定.结果发现得到DJPc的最佳提取工艺条件为料液比1∶18,提取时间2.5h,提取温度80℃,得率为10%;DJPc的单糖组成为Rha、Ara、Xyl、Man、Glc、Gal,其摩尔比为1.0∶0.7∶1.6∶0.8∶1.2∶1.5;在DJPc浓度为2500μg/m L时,得到对·OH自由基和DPPH·自由基的最大清除率,分别为64.9%、50.2%,说明DJPc具有很好的体外抗氧化作用.  相似文献   

5.
以蒲公英根烘焙粉为原材料,研究了酶添加量、酶解温度和酶解时间在单酶和双酶协同酶解条件下对多糖得率和DPPH自由基清除率的影响,并采用响应曲面法优化了酶解工艺参数。结果表明,单酶法提取1g蒲公英根多糖的适宜条件为:料水比(g∶mL)1∶30,纤维素酶酶解温度50℃,酶添加量1.0mL;木瓜蛋白酶酶解温度60℃、酶添加量2.0mL。双酶法多糖提取率高于单酶法,影响多糖得率的工艺因素主次顺序为酶解时间、酶解温度、酶添加量。适宜的多糖提取条件为:料水比(g∶mL)1∶30,木瓜蛋白酶悬液(200U/mL)添加量1.98mL,纤维素酶悬液(200U/mL)添加量0.99mL,55℃提取1.9h,此时多糖得率为32.97%±0.13%,DPPH 自由基清除率为92.31%±0.25%。烘焙和酶解工艺可提高蒲公英根多糖得率和DPPH自由基清除率。  相似文献   

6.
以东海海参胶原蛋白为原料,采用超声波辅助酶解制备低聚肽(分子量小于1 kDa),并对其抗氧化性进行了研究。研究结果表明,超声波辅助对胃蛋白酶、胰蛋白酶、中性蛋白酶和木瓜蛋白酶酶解东海海参胶原蛋白均有显著促进效果,低聚肽含量和收率均有大幅提高。当超声波功率为100 W时,中性蛋白酶酶解的低聚肽含量最高,达70.5%。采用单因素试验,对超声波辅助下中性蛋白酶酶解工艺进行优化,确定最佳酶解工艺为:超声波功率100 W,酶解温度60℃,酶解pH 7.0,酶添加量5%(w/w),酶解时间20 min。在最佳工艺条件下,低聚肽含量和收率最大达75.4%和52.9%。抗氧化试验表明,该低聚肽对DPPH和ABTS清除的效果均随低聚肽浓度的增加而增强。该低聚肽对ABTS的清除快速高效,对DPPH的清除则随着处理时间的延长而缓慢增加。当低聚肽浓度为8 mg/mL,处理时间为30 min时,DPPH和ABTS的清除率分别为19.0%和87.2%。  相似文献   

7.
以低值海地瓜(Acaudina molpadioides)体壁干品为实验原料,优化酶解超滤工艺条件,联合制备出不同分子质量段的海地瓜多糖和多肽,优化确定柱层析法分离纯化海地瓜多糖的工艺参数,对比探究不同分子质量段海地瓜多糖和多肽的体外抗氧化活性。结果表明:先用胰蛋白酶在料液比(m/V)1∶40、加酶量2.4%(质量分数)、p H值7.5、45℃下酶解8 h,然后超滤分离得到分子质量小于10 ku的海地瓜多肽,提取率达到(29.602±1.012)%;再用中性蛋白酶和木瓜蛋白酶复合使用对超滤截留液和一次酶解沉淀进行二次酶解提取多糖,先加入质量分数7%的中性蛋白酶,45℃下酶解4 h;再加入质量分数8%的木瓜蛋白酶,60℃下酶解4 h,p H值均为7.0,粗多糖提取率达到(14.511±0.162)%。确定最佳超滤条件为:操作压力0.20 MPa,料液质量分数6%,操作温度35℃。得到海地瓜多肽P_1(5~10 ku,48.47%)、P_2(1~5 ku,18.46%)和P_3(1 ku,33.07%);得到海地瓜粗多糖G_1(10 ku,63.09%)、G_2(10~100 ku,7.24%)、G_3(100~200 ku,4.67%)和G_4(200 ku,25.00%)。采用Q-Sepharose-Fast-Flow阴离子交换柱层析法对G_4进行纯化,在0,0.5,1.5 mol/L洗脱盐浓度下,得到3个纯化多糖组分G_(4-1)、G_(4-2)和G_(4-3)。体外抗氧化活性检测结果显示,不同分子质量段海地瓜多肽对·OH的清除能力强弱顺序为:P_3P_2P_1,对DPPH·和O_2~-·的清除能力强弱顺序均为:P_2P_3P_1。不同海地瓜粗多糖对·OH、DPPH·和O_2~-·的清除能力强弱顺序依次为:G_4G_1G_3G_2,G_4G_3G_1G_2,G_1G_4G_2G_3;纯化多糖对·OH的清除能力强弱顺序为:G_(4-1)G_(4-2)G_(4-3),对DPPH·和O_2~-·的清除能力强弱顺序均为:G_(4-2)G_(4-1)G_(4-3)。  相似文献   

8.
以鲷鱼鳞为原料,经物理方式处理后,采用单因素实验考察液料比、pH值、温度、酶底比及酶解时间对鲷鱼鳞酶解液水解度和DPPH自由基清除率的影响.结合响应面优化设计对酶解条件进行优化,结果在液料比为28∶1、酶底比7.0%、pH值7.3、50℃、酶解6 h条件下,所得酶解液水解度为10.35%,DPPH自由基清除率为82.33%.DPPH自由基清除、羟基自由基清除、还原力、金属螯合测试表明,酶解产物的抗氧化活性与浓度呈现剂量依赖性,具有抗氧化活性.分子量测定及氨基酸组成分析表明,酶解产物含有大量的寡肽,相对分子质量分布区间为180~1 000 u,其富含甘氨酸、丙氨酸、羟脯氨酸,且含有多种人体必需的氨基酸.  相似文献   

9.
考察提取时间、料液比、乙醇体积分数和提取温度对火龙果果皮总黄酮和多糖得率的影响. 并在单因素实验结果的基础上设计L9(34)的正交实验,优化总黄酮和多糖的提取工艺. 此外,通过进行DPPH ·、ABTS自由基及·OH的清除实验,考察火龙果果皮提取物的抗氧化活性能力. 正交实验优化得出的提取时间3 h、料液比1 ∶ 30、乙醇体积分数70%、提取温度70 ℃为火龙果果皮总黄酮和多糖的最佳提取工艺. 该条件下提取到的火龙果果皮总黄酮和多糖的平均质量分数分别为7.87 mg/g和114.05 mg/g. 在373.44 μg/mL时,抗坏血酸对DPPH ·、ABTS自由基及·OH的最大清除率分别达到95.25%、99.57%、89.99%;而火龙果果皮提取物的最大清除率分别为88.64%、60.84%和61.77%,数据表明火龙果果皮提取物对自由基的清除率均达到对照品的2/3,证实火龙果果皮提取物具有良好的抗氧化活性能力,可作为天然抗氧化剂的提取原材料.  相似文献   

10.
探讨了超声波辅助前处理对花生分离蛋白复合酶解的影响,比较了碱性蛋白酶、木瓜蛋白酶、胰蛋白酶、胃蛋白酶、中性蛋白酶、风味蛋白酶等六种蛋白酶解物清除DPPH自由基的效果,确定碱性蛋白酶和胰蛋白酶较佳的复合比例为8∶2.在此基础上,开展响应面优化试验,以DPPH自由基清除率和水解度为指标,探讨复合酶与风味蛋白酶酶解的较佳工艺参数,并分析DPPH清除率和水解度相关性.实验结果表明,复合蛋白酶制备花生分离蛋白抗氧化肽的较佳酶解工艺为pH 8.5,温度49.36℃,酶添加量(E/S,质量分数m/m)3.40%,酶解时间203.59 min.  相似文献   

11.
采用碱提酸沉法从紫苏籽粕中提取蛋白质,进行蛋白酶筛选,发现紫苏籽蛋白经碱性蛋白酶酶解后有最好的抗氧化活性和水解度(DH).在单因素试验的基础上,采取响应面分析方法,并建立数学模型,确定最佳酶解工艺.试验结果表明:各因素影响紫苏籽粗蛋白酶解液DPPH自由基清除率的主次顺序是:加酶量酶解时间pH值,最佳条件是:加酶量3 000 U·g~(-1),酶解时间5.00 h,pH值9.80,温度50℃,此时DPPH自由基清除率为73.64%,说明紫苏籽蛋白质酶解多肽拥有很高的抗氧化活性.  相似文献   

12.
为了探究酶解时间对罗非鱼鱼皮胶原蛋白酶解物抗氧化活性的影响,采用酸法提取罗非鱼鱼皮胶原蛋白,胃蛋白酶酶解3、6、9、12和24 h制备酶解物,进行紫外光谱扫描,水解度测定,以DPPH·、·OH和O2?·清除率为指标评价抗氧化活性.结果表明:最大紫外吸收峰相似,水解度与酶解时间呈正相关;9 h酶解物对三种自由基清除效果最...  相似文献   

13.
以褐藻为原材料, 利用复合酶提取法提取可溶性膳食纤维(SDF). 先通过单因素实验研究不同提取条件对褐藻SDF提取率的影响, 再进行响应面实验分析, 从而确定复合酶法提取褐藻SDF的最佳条件; 测定所得褐藻 SDF 的理化特性, 并测定其抗氧化活性. 结果表明:  最佳提取条件为m(固)∶V(液)=1∶25, 55 ℃的酶解温度、 75 min的酶解时间、2.2%的酶添加量, 该条件下得到褐藻SDF的最大提取率为38.15%,相对偏差为2.23%;褐藻 SDF 的持水力和膨胀力分别为 24.6 g/g, 53.7 mL/g; 对1,1-二苯基-2-三硝基苯肼(DPPH.)自由基清除率达75.77%, 对2,2′-联氮-双-3-乙基苯并噻唑啉-6-磺酸(ABTS.)自由基清除率在褐藻SDF质量比为160 μg/g时与对照组无显著性差异.    相似文献   

14.
为更客观地评价蚕蛹抗氧化肽的抗氧化能力, 以人工胃肠模拟液对不同蛋白酶酶解物的抗氧化能力进行评价, 优选获得最佳的制备用酶——碱性蛋白酶. 在此基础上,以蚕蛹抗氧化肽总还原能力为指标, 利用响应曲面法(response surface method, RSM)优化碱性蛋白酶制备蚕蛹抗氧化肽的最佳酶解工艺. 结果表明: 碱性蛋白酶的最佳酶解条件为pH=8.30, 加酶量为15.34 μL(1 902 U), 温度为50.47 ℃, 时间为2.45 h; 在此条件下优化预测得到的2 mg 蚕蛹蛋白/mL 酶解液的总还原能力为0.434, 蚕蛹抗氧化肽对·OH 和DPPH· 自由基的半数清除率IC50 分别为4.51 与4.24 mg/mL.  相似文献   

15.
以扇贝裙边的酶解产物——蛋白多肽对ACE活性的抑制率作为控制水解程度的指标,确定制备ACE活性抑制肽的最佳酶种及酶解工艺技术条件.通过胰蛋白酶、胃蛋白酶、木瓜蛋白酶、复合风味酶、枯草杆菌蛋白酶5种酶酶解扇贝裙边得到的蛋白多肽对ACE抑制能力的比较发现,5种酶在不同酶解时间所得到的酶解蛋白多肽都具有一定的ACE抑制能力,其中胃蛋白酶酶解蛋白多肽的ACE抑制率最高,为91.33%;再经L9(3)4正交实验对胃蛋白酶酶解工艺条件进行优化,确定酶解反应最佳条件是酶量400 U.g-底1物,pH 2.5,温度32℃,底物浓度(原料∶水)1∶2,酶解时间3 h;试验结果还表明,单酶(胃蛋白酶)的酶解蛋白多肽比复合酶(复合风味酶)和双酶(胃蛋白酶 木瓜蛋白酶)的酶解蛋白多肽对ACE活性的抑制能力都强.  相似文献   

16.
采用5种蛋白酶分别对鸡肝进行水解,以水解度为指标,通过单因素试验,对原料预处理方法、酶解温度、pH、酶用量(E/S)、底物浓度及酶解时间等酶解条件进行优化,确定了Alcalase、Neutrase、Protamex、Fla-vourzyme以及木瓜蛋白酶水解鸡肝的工艺条件.综合比较酶解产物的水解度、氮回收率、感官质量和胆固醇含量发现,Alcalase水解能力最强,且产物苦味较弱;而Flavourzyme所得水解产物感官质量最好,无苦味,且具有较好的鲜味;酶解产物中均不含胆固醇.优选Alcalase用于单酶水解鸡肝,通过正交实验优化确定其最佳水解条件为:温度60℃,pH值8.0,加酶量1.25%,水解时间2.5h,底物浓度7.5%.在此条件下所得酶解液水解度为52.62%,氮回收率为85.32%.  相似文献   

17.
选取木瓜蛋白酶、中性蛋白酶、风味蛋白酶分别对骨素进行酶解,对比了几种酶解液的苦味和水解度.结果表明:风味蛋白酶最适合酶解骨蛋白,其水解产物鲜味明显,无明显苦味;木瓜蛋白酶水解骨蛋白效果最差,其水解产物苦味最为明显;中性蛋白酶水解效果介于风味蛋白酶和木瓜蛋白酶之间.风味蛋白酶水解骨蛋白的最佳酶解条件为:温度50℃,加酶量6 000 U/g底物蛋白,p H值为7.0,酶解时间2 h,料液比1∶5(g/m L),在此条件下其水解度可达34.80%.  相似文献   

18.
以DPPH自由基清除率和收率为响应值,采用响应面法对复合酶法水解花生粕生产抗氧化性肽工艺条件进行了优化.研究结果表明,碱性蛋白酶和中性蛋白酶对花生粕具有较强的水解能力,二者以2∶1的比例对花生粕水解时,较优水解条件是50℃,pH值8.54,底物质量分数8.34%.在此条件下酶解16 h,花生肽收率为65.80%,在花生肽质量浓度为0.55 mg/mL时,对DPPH自由基清除率为25.77%,与优化前相比,复合酶比碱性蛋白酶单酶水解时收率和DPPH自由基清除率分别提高了7.48%和7.66%,比中性蛋白酶单酶水解时分别提高了10.29%和22.53%.  相似文献   

19.
以轮叶党参为试材,采用单因素试验和响应面法相结合的方法研究轮叶党参多糖提取的最佳条件,评价其体外抗氧化活性.结果表明:在超声功率138 W,超声时间14 min,超声温度35℃条件下,轮叶党参多糖的平均得率为12.48%;轮叶党参多糖CLPS1具有较强的抗氧化能力,对DPPH·,·OH,ABTS+有很好的清除能力,IC50分别为(3.04±0.35)mg/mL、(2.494±0.4)mg/mL和(3.41±0.59)mg/mL.  相似文献   

20.
菲律宾蛤仔木瓜蛋白酶水解物抗氧化活性研究   总被引:1,自引:0,他引:1  
以菲律宾蛤仔蛋白为原料,用木瓜蛋白酶对其进行水解,采用正交实验方法研究酶解温度、酶解时间,加酶量和pH对水解度和抗氧化性的影响;通过检测羟自由基清除率、DPPH自由基清除、超氧阴离子自由基清除率和还原力评价水解物的抗氧化性。结果表明:水解度与抗氧化性之间没有正反相关系,当温度为45℃,时间为6 h,加酶量为1 500μg/g,pH为7.0时,水解度最大;温度为45℃,时间为2 h,加酶量为2 000μg/g,pH为7.0时,水解物的抗氧化活性最强;水解物对羟自由、DPPH自由基和超氧阴离子自由基均有很好的清除作用,并呈现浓度依赖性。因此,菲律宾蛤仔蛋白的木瓜蛋白酶水解物具有很好的抗氧化性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号