首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Disc-electrospinning using a disc as spinneret and a rotary drum as collector is a novel technology to prepare nanofiber which has been applied in tissue engineering scaffolds. In this study, nanofibrous mats with mlcro-patterned structure were fabricated via disc-electrospinning. Poly (ε-eaprolactone) (PCL) was dissolved in trifluoroethanol (TFE) at various concentrations ( 2 %-7 % ) (w/v) for electrospinning and the applied voltage ranged from 40 to 70 kV. Scanning electron microscopy (SEM) was employed to observe the morphology of the nanofibrous scaffolds. SEM images illustrated that the nanofibers with beads formed micro-patterned structure such as triangles and other polygons. The average diameter of nanofibers presented various size with the concentration increased from 2% to 7%. The beads on the nanofibers constructed the vertexes of the polygons, while nanofibers bridged between adjacent vertexes. The concentration of solution and applied voltage may be two dominant factors to influence the topological structure of the nanofibrons scaffolds. Cells cultured on the micro-patterned scaffold spread along the edges of the polygons. The scaffold with patterned structure may have a promising application in tissue engineering.  相似文献   

2.
The preparation of natural brucite nanofibers through dispersion by the wet process is described. The test results indicate that brucite fibers can be well dispersed by using sodium dioctyl sulfosuccinate (OT) as the dispersant at a dispersant/fiber mass ratio of 0.15:1, dispersing for 30 min at a water/solid mass ratio of 20:1. The prepared nanofibers were characterized with X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM). It is shown that the prepared single brucite nanofiber is around 30 nm in diameter and the talus of the nonsingle brucite nanofibers is about 50-150 nm in diameter. Natural brucite mineral fibers were treated by the dispersion method to obtain nanomaterials. These fibers have significant advantages over artificial nanofibers both in yield and in cost.  相似文献   

3.
Vitamin E( VE) is an ideal antioxidant and a stabilizing agent in biological membranes. In this study,silk fibroin( SF) /hydroxybutyl chitosan( HBC) nanofibrous scaffolds are loaded with VE tocopherol polyethylene glycol 1000 succinate( VE TPGS) via electrospinning. SEM images show that the average nanofibrous diameter has no significant difference when the content of VE TPGS increases to 4. 0%( SF / HBC). However,the average nanofibrous diameter decreases largely to 200 nm when the VE TPGS content reaches 6. 0%. Furthermore,VE TPGS presents a sustained release behavior from the nanofibrous scaffolds. Cell viability studies of mouse skin fibroblasts( L929) demonstrate that VE TPGS loaded SF / HBC nanofibrous scaffolds present good cellular compatibility.Moreover,the incorporation of VE TPGS could strengthen the ability of SF / HBC nanofibrous scaffolds on protecting the cells against oxidation stress using the Tertbutyl hydroperoxide( t-BHP)-induced oxidative injury model. Therefore,VE TPGS-loaded SF /HBC nanofibrous scaffolds might be potential candidates for personal skin care,wound dressing and skin tissue engineering scaffolds.  相似文献   

4.
Electrospinning technique was used for the fabrication of poly ( vinyl alcohol ) ( PVA ) / regenerated silk fibrnin ( SF ) composite nanofibers, loaded with ciprofloxacin HCI (CipHCI) as a wound dressing. Electrospun PVA/SF/CipHCI composite nanofibers were stabilized against dissolving in water by heating in an oven at 155℃ for 5 min. Incorporation of CipHCi into electrospun nanofibers was confirmed by SEM and FT.IR spectra. Further the mechanical properties test illustrated that the addition of CipHCI enhanced the mechanical properties of PVA and PVA/SF nanofibers. The antibacterial activities against Escherichia coU (E. coli ) ( gram-negative ) and Staphylococcus aureus ( S. aureus ) (gram-positive) organisms were evaluated by disk diffusion method; and results suggested that electrospun PVA/CipHCI and PVA/SF/ CipHCI composite nanofibers showed a remarkable antibacterial activity.  相似文献   

5.
In order to improve the antibacterial property of cellulose,a new N-halamine antibacterial material precursor was synthesized.1,2,3,4-Butanetetracarboxylic acid( BTCA) was used to attach the N-halamine precursor onto cotton fabric as the cross-linking agent. The synthesized compound was characterized by1 H nuclear magnetic resonance(1H NMR). The cotton fabric treated with Nhalamine precursor was characterized by Fourier transform infrared spectroscopy( FT-IR) and scanning electron microscopy( SEM).The antimicrobial efficacy, washing durability and UVA light stability were investigated. The cotton fabric treated with the Nhalamine precursor could be rendered biocidal after exposure to dilute household bleach. The chlorinated cotton fabric shows great antimicrobial efficacy,100% of Staphylococcus aureus( S. aureus)with 1.00 ×10~7 CFU and 99. 998% of Escherichia coli (E. coli)O157∶H7 with 2. 20 × 10~7 CFU can be inactivated with 30 min of contact. Washing durability tests indicate that over 55% of the chlorine can be regained upon rechlorination after 50 washing cycles,and UVA light stability tests show that over 62% of the chlorine can be regenerated after irradiation of 12 h.  相似文献   

6.
A mass flow matching model(MFMM) was established for studying the stable status of solution electrospinning. The study of the solution droplet status at the needle tip focused on various combinations of applied voltages and injection rates to figure out their influence on steadily fabricating polyvinyl alcohol(PVA) nanofibers prepared from PVA spinning solutions with two different mass fractions(10% and 16%). The results revealed that during the stable electrospinning, the influence resulted fro...  相似文献   

7.
NiO-SnO2 composite nanofibers were synthesized via electrospinning techniques and characterized by X-ray diffraction,scanning electron microscopy,transmission electron microscopy,and X-ray photoelectron spectroscopy.Three types of sensor were applied to investigate the sensing properties of these nanofibers.Sensors A were fabricated by mixing the nanofibers with deionized water,and then grinding and coating them on ceramic tubes to form indirect heated gas sensors.Microsensors B(with an area of 600 μm×200 μm) were formed by spinning nanofibers on Si substrates with Pt signal electrodes and Pt heaters.Sensors C were fabricated by spinning nanofibers on plane ceramic substrates(with a large area of 13.4 mm×7 mm) with Ag-Pd signal electrodes only.The operating temperatures of sensors A and B were controlled by adjusting heater currents,and the operating temperatures of sensors C were controlled by adjusting an external temperature control device.Experimental results show that sensors C possess the highest sensing properties,such as high response values(about 42 to 100 μL/L ethanol),quick response/recovery speeds(the response and recovery times were 4 and 7 s,respectively),and excellent consistencies.These phenomena were explained by the retained fiber morphology and suitable sensor area.The presented results can provide some useful information for the design and optimization of one-dimensional nanomaterial-based gas sensors.  相似文献   

8.
In this study, the mechanical properties of tungsten-rhenium wires with nanofibrous microstructure were investigated at both room temperature (RT) and 800℃. The strengthening mechanism associated to the nanofibrous microstructure was discussed. The results showed that the tungsten-rhenium wires with nanofibrous grains exhibited a very high tensile strength reaching values of 3.5 GPa and 4.4 GPa for the coarse (grains diameter of 240 nm) and fine (grains diameter of 80 nm) wires, respectively. With increasing the temperature from RT to 800℃, the tensile strength decreased slightly but still held high values (1.8 GPa and 3.8 GPa). All the fracture surfaces exhibited apparent necking and characteristics of spear-edge shaped fracture surface, indicating excellent ductility of the wires. A model of the strengthening mechanism of these tungsten-rhenium wires was proposed.  相似文献   

9.
Embedding particle drugs in beaded nanofibers by electrospinning has been shown a potential approach to control drug release in tissue engineering. The bead size is one of the critical parameters in controlling the drug release rate. In this study,the relationship between polymer concentration and beads size was investigated. Aqueous polyethylene oxide( PEO) solutions with different concentrations were prepared to obtain various beaded nanofibers by electrospnning. Optical microscope and scanning electron microscope( SEM) were used to observe the variation tendency of bead size. With an increase in the polymer concentration,the diameter of fibers between beads became bigger,while the fiber uniformity improved. In addition, the polymer concentration influenced the distribution of bead diameter. Higher polymer concentration would reduce the possibility of small-sized beads formation and improve the uniformity of bead diameter. The study provides a possible way to control the size of beads,which is helpful for further research on the control of particle drug release.  相似文献   

10.
Poly(acrylo-amidino ethylene amine) (PAEA) nanofiber membranes have been synthesized by combining the electrospinning technique and subsequent chemical modification. The membranes were used to remove As(V) from aqueous solution. The adsorption kinetics, equilibrium isotherms, and pH effect were investigated in batch experiments. The Langmuir isotherm and pseudo second-order kinetic models agree well with the experimental data. The PAEA nanofibers are effective for As(V) adsorption at pH 3. Experimental results showed that the maximum adsorption capacity of the PAEA nanofibers with As(V) is 76.92 mg g-1 , which is much higher than that of the PAEA microfibers (27.62 mg g-1 ). The adsorption rate of PAEA nanofibers is faster than that of PAEA microfibers due to its higher specific surface area. The PAEA nanofibers can be used as an effective adsorbent for the removal of As(V) in aqueous solution due to high adsorption capacity and short adsorption time to achieve equilibrium.  相似文献   

11.
Composite nanofibrous mats consisting of poly( L-lactideco-ε-caprolactone)( PLCL) and collagen type I( COL) were fabricated by electrospinning,and ten times simulated body fluid(10SBF) were employed to mineralize nanofibrous mats. Ballshaped hydroxyapatite( HA) was deposited on the surface of nanofibrous mats in 1. 5 h at room temperature. Human fetal osteoblasts( hFob) were seeded to investigate their proliferation and differentiation on mineralized composite nanofibrous mats. The results showed that hFob grew well on mineralized composite nanofibrous mats and alkaline phosphatase( ALP) activity of hFob on mineralized composite nanofibrous mats at 14 d was much higher than that on untreated nanofibrous mats. Moreover,the expression of osteocalcin of cells on mineralized composite nanofibrous mats was also much higher than those on untreated nanofibrous mats at 7 d and 14 d. This mineralized composite nanofibrous mats may have a great potential for bone tissue engineering.  相似文献   

12.
Collagen(Col)/chitosan(CS)nanofibrous membrane has great potential to be used as wound dressing.However,current Col/CS nanofibrous membrane produced from electrospinning can not offer sufficient mechanical strength for practical applications.Herein,a novel mixed solvent was used to prepare next-generation high-strength Col/CS nanofibrous membrane.Meanwhile,the optimal Col to CS weight ratio was investigated as well.The asproduced membrane was examined by scanning electron microscopy(SEM),attenuated total reflectance Fourier transform infrared spectroscopy(ATR-FTIR),differential scanning calorimetry(DSC),and XF-1A tester to study its morphological,chemical,thermal and mechanical properties.The preliminary results demonstrated that the mechanical properties of Col/CS nanofibrous membranes were enhanced substantially with the increase of CS weight ratios from 0 to 90%and the optimal Col to CS weight ratio was determined to be 1∶1.A promising way was presented to fabricate Col/CS electrospun nanofibrous membrane with sufficient mechanical strength for practical wound dressing applications.  相似文献   

13.
Study of the effect of dissolved oxygen and shear stress on rifamycin B fermentation with A. mediterranei XC 9-25 showed that rifamycin B fermentation with Amycolatoposis mediterranei XC 9-25 needs high dissolved oxygen and is not very sensitive to shearing stress. The scale-up ofrifamycin B fermentation withA, mediterranei XC 9-25 from a shaking flask to a 15 L fermentor was realized by controlling the dissolved oxygen to above 25% of saturation in the fermentation process, and the potency of rifamycin B fermentation in the 15 L fermentor reached 10 g/L after 6-day batch fermentation. By continuously feeding glucose and ammonia in the fermentation process, the potency of rifamycin B fermentaion in the 15 L fermentor reached 18.67 g/L, which was 86.65% higher than that of batch fermentation. Based on the scale-up principle of constantly aerated agitation power per unit volume, the scale-up of rifamycin B fed-batch fermentation with continuous feed from a 15 L fermentor to a 7 m^3 fermentor and further to a 60 m^3 fermentor was realized successfully. The potency of rifamycin B fermentation in the 7 m^3 fermentor and in the 60 m^3 fermentor reached 17.25 g/L and 19.11 g/L, respectively.  相似文献   

14.
Recent years, it has attracted more attentions to increase the porosity and pore size of nanofibrous scaffolds to provide the for the cells to grow into the small-diameter vascular grafts. In this study, a novel bi-layer tubular scaffold with an inner layer and an outer layer was fabricated. The inner layer was random collagen/poly ( L-lactide-co-caprolactone ) I P ( LLA- CL) ] nanofibrous mat fabricated by conventional electrospinning and the outer layer was aligned collagen/P (LLA-CL) nanoyarns prepared by a dynamic liquid dectrospinning method. Fourier transform infrared spectroscopy (FTIR) was used to characterize the chemical structure. Scanning electron microscopy ( SEM ) was employed to observe the morphology of the layers and the cross- sectioned bi-layer tubular scaffold. A liquid displacement method was employed to measure the porosities of the inner and outer layers. Stress-strain curves were obtained to evaluate the mechanical properties of the two different layers and the bi-layer membrane. The diameters of the nanofibers and the nanoyarns were (480 ± 197 ) nm and ( 19.66 ± 4.05 ) μm, respectively. The outer layer had a significantly higher porosity and a larger pore size than those of the inner layer. Furthermore, the bi-layer membrane showed a good mechanical property which was suitable as small-diameter vascular graft. The results indicated that the bi-layer tubular scaffold had a great potential application in small vascular tissue engineering.  相似文献   

15.
Cu-doped TiO2 nanofibers with an average diameter of about 80 nm are synthesized through an electrospinning method. Both anatase and rutile crystallographic structures are found in the fibers based on XRD results. Compared with pure TiO2 nanofibers, the Cu-doped TiO2 nanofibers exhibit improved CO sensing properties at 300°C. The sensitivity of Cu-doped TiO2 nanofibers is up to 3 when the sensor is exposed to 5 ppm CO, and the response and recovery times are about 4 and 8 s, respectively. Good selectivity i...  相似文献   

16.
With epoxy coal tar as the coating material, the electrochemical corrosion behavior of Q235 with different kinds of bulk coating holidays has been investigated with EIS (Electrochemical Impedance Spectroscopy) in a 3.5vol% NaCl aqueous solution. The area ratio of bulk coating holiday to total coating area of steel is 4.91%. The experimental results showed that at free corrosion potential, the corrosion of carbon steel with disbonded coating holiday is heavier than that with broken holiday and disbonded & broken holiday with time; Moreover, the effectiveness of Cathodic Protection (CP) of carbon steel with broken holiday is better than that with disbonded holiday and disbonded & broken holiday on CP potential -850 mV (vs CSE). Further analysis indicated that the two main reasons for corrosion are electrolyte solution slowly penetrating the coating, and crevice corrosion at steel/coating interface near holidays. The ratio of impedance amplitude (Z) of different frequency to minimum frequency is defined as K value. The change rate of K with frequency is related to the type of coating holiday.  相似文献   

17.
Porous SiC ceramics with uniform microstructure were fabricated by quick freezing in liquid nitrogen and solid state sintering.Poly(vinyl alcohol)(PVA) was added as binder and pore morphology controller in this work.The microstructure and mechanical properties of porous SiC ceramics could be controlled by the composition of the aqueous slurries.Both solid content of the slurries and PVA content impacted on the pore structures and mechanical properties of the porous SiC ceramics.The solid content of slurries and PVA content varied from 60 to 67.5 wt%and 2-6 wt%,respectively.Besides,the grain morphology of ceramics was also tailored by changing the sintering temperature from 2050 to 2150 ℃.Porous SiC ceramics with an average porosity of 42.72%,flexural strength of 59.28 MPa were obtained at 2150 ℃ from 67.5 wt% slurries with 2 wt% PVA.  相似文献   

18.
The DBSA-PANI-Fe composite powder with 50wt% of Fe nanoparticles was prepared by mechanically mixing the DBSA-doped polyaniline powder and Fe nanoparticles. The composite powder was compacted to pellets and the pellets were annealed in vacuum at 443,493,543, and 593 K for 60 and 120 min. The conductivity of the pellet increases markedly with increasing the annealing temperature up to 493 K, and then decreases with further increasing the annealing temperature. When the pellet was annealed at 493 K for 60 min, the increment of conductivity reaches a maximum value, and the conductivity is 2.6 times as large as that of the pellet unannealed. The conductivities of the pellets annealed under the conditions of 543 K/120 min, 593 K/60 min, and 593 K/120 min are lower than the conductivity of the pellet unannealed. For all the pellets, the variation in conductivity with temperature reveals that the charge transport mechanism can be considered to be 1-D variable-range-hopping (1-D VRH). The composite pellet shows a magnetic hysteresis loop independent of the annealing condition. The saturation magnetization is about 5.4×104 emu/kg. The saturation field and the coercivity are estimated to be 4.38×105 and 3.06×104 A/m, respectively. The crystalline structure ofFe nanoparticles in the composites does not change with the annealing condition. The annealing condition cannot destroy the polymer backbones.  相似文献   

19.
The quantificational and normative design is the precondition of improving the design of copper staves for blast furnaces. Based on a 3-dimensional temperature field calculation model, from the view point of heat transfer and long campaigns note with the core of forming accretion, the forming-accretion-ability (FAA) and the rib hot surface maximum temperature difference (△Tmax) as quantificational indexes to direct and evaluate the design of copper staves for blast furnaces were presented. The application of the two indexes in design essentially embodies the new long campaigns in the stage of design. With the application of the two indexes, good results can be obtained. Firstly, it was suggested that the rib height of a copper stave can be reduced to 15 mm, which is a new method and theory for the reduction of copper staves. Secondly, the influence of insert on FAA and △Tmax, is decided by the volume of insert. According to this, the principle of design for the hot surface geometry of copper staves was put forward that the ratio of the rib hot surface to the copper stave hot surface (abbreviated as the ratio of rib to stave) must be maintained in the range of 45% to 55%; for the present copper stave with a 35-40 mm thick rib, the ratio of rib to stave in the range of 50% to 55% can optimize the design of copper staves; for the copper stave with a smaller rib thickness, for example 15 ram, the ratio of rib to stave in the range of 45% to 50% can optimize the design of copper staves. It can be summarized that the thicker the rib thickness, the larger is the ratio of rib to stave.  相似文献   

20.
Biodegradable shape memory polymers (SMPs) are a class of intelligent materials with great potential for imparting biomaterial scaffolds multifunetionality in the field of tissue engineering and regenerative medicine. In this study, the biodegradable SMP poly( D, L-lactide-co-trimethylene carbonate) (PLMC) incorporated with the ,dexamethasone (Dex), which was a kind of synthetic bone-formation inducing factor, was fabricated into nanofibers via dectrospinning. The morphology, constituent, thermal and mechanical properties of the produced Dex/PLMC composite nanofibers were characterized by scanning electron microscopy (SEM), Fourier transform :infrared spectroscopy ( FTIR ), differential scanning calorimetry (DSC), and tensile testing, respectively. Then, ultrasound was ,employed as a remote stimulus to regulate the Dex releasing behavior from the composite nanofibers. It was found that the generated Dex/ PLMC composite nanofibers had a uniform and smooth morphology with a diameter of ca. 564 nm. Mechanical testing results showed that incorporation of the Dex gave rise to improved mechanical performance with the tensile strength, Young' s modulus and strain- at-break increased by 18.2 %, 20. 0 % and 64.4 %, respectively. DSC data revealed that the glass transition temperature ( Tg ) of the composite nanofibers, i. e., the thermal transition temperature (Ttrans) for activating shape memory effect, was 39. 7 ℃. Moreover, the release kinetics of the encapsulated Dex in the aanofibers could be manipulated by varying the acoustic power and insonation duration. These results suggested that the newly developed Dex/PLMC nanofibers could be a promising drug delivery system for applications in bone tissue engineering (BTE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号