首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 437 毫秒
1.
利用并联机器人的运动学反解模型,通过误差传递矩阵的求解来探讨机器人主要误差源与其位姿误差之间的关系,建立了并联机器人的位姿误差模型、并讨论了并联机器人主要误差源对位姿精度的影响,为实际误差的补偿与控制奠定了理论基础.  相似文献   

2.
为了提高串联机器人的绝对定位精度,提出了一种基于微分法和矩阵法的机器人误差源分析方法.首先分析单个连杆姿态矩阵的微小误差;然后利用积分法分析多个连杆末端的位姿误差,采用微分法和修正Denavit-Hartenberg(MDH)运动学模型,对末端位姿误差的敏感度进一步分析;最后通过Matlab软件分析,分别得出机器人4个关节的扭角和转角对末端位姿影响的曲线图,以及连杆长度和偏移量对末端位姿影响的曲线图,对影响末端位姿的几何参数进行运动学误差分析和规避,即可从源头上解决串联机器人绝对定位精度的问题.  相似文献   

3.
颌骨重建手术机器人定位精度分析与误差补偿   总被引:1,自引:1,他引:0  
为提高颌骨重建机器人的精度,借助于—台可以实现绝对坐标测量的高精度光学定位跟踪仪,对机器人系统的定位精度进行了误差分析与补偿研究.针对结构参数和运动变量误差,采用修正的运动学模型,进一步真实地反映了机器人的实际结构参数;对齿轮传动误差和间隙引起的关节回转误差通过实验进行了修正,有效提高了关节传动精度;对零位定位误差,通过机器人逆运动学反解出关节转角,并进行误差补偿,提高了定位基准的精度.实验结果表明上述方法可有效提高颌骨重建机器人的定位精度.   相似文献   

4.
装配机器人位姿误差补偿的研究   总被引:2,自引:0,他引:2  
在分析装配机器人位姿误差的基础上,提出了机器人位姿误差补偿模型,最后经实验表明本方法对提高装配机器人位姿精度十分有效。  相似文献   

5.
为解决现有脑外科机器人存在的绝对定位精度难于满足精细手术应用的问题,提出一种视觉伺服的系统方案,引入高精度光学跟踪手段,对机器人的末端位姿进行实时测量并反馈。采用一种基于关节空间控制和位姿空间动态补偿综合的机器人视觉闭环控制方法,并设计了动态校正控制算法。仿真结果表明:动态位姿闭环可以有效克服各种参数误差因素的影响,对机器人的绝对定位和跟踪误差具有校正作用,明显改善了轨迹跟踪精度,同时提高了鲁棒性能。绝对定位达到神经外科手术±1mm的精度要求,实际运用取得了令人满意的结果。  相似文献   

6.
提高运动精度是机器人执行精密操作的基础.该文针对重载操作造成的机器人末端结构变形问题进行位姿补偿研究.首先,提出了基于模型和数据驱动的机器人末端6D位姿估计方法,该方法利用基于Gauss过程回归的机器人运动学误差模型获得部分目标点空间位置的预测值;然后,提出了基于测量平差的位姿修正方法,对目标点位置的实测值和预测值进行...  相似文献   

7.
为保证换刀机器人和FMS的可靠运行,该文研究FMS中换刀机器人的位置和姿态误差问题,运用齐次变换矩阵和微分关系,建立描述机器人末端操作器——双手爪位姿误差的模型,详细分析影响手部精度的机器人各关节运动误差的来源及其统计特性,对整个换刀机器人的位姿误差进行综合分析、获得手部位姿误差的数值。为机器人的精度分配和评价机构设计提供依据,也给误差控制确立了基础.经过实际运行和测量,证实了位姿误差分析的正确性。  相似文献   

8.
几何参数误差对机器人末端绝对定位精度影响最大,而几何误差参数辨识是一个高维非线性问题,求解困难,所以建立一种简单高效的辨识算法是有必要的,本文提出了遗传模拟退火算法(GA-SA)对机器人几何参数误差辨识。以机器人末端位姿误差最小为目标,采用遗传模拟退火算法辨识机器人几何参数误差,以ABB IRB120为算例迭代1100次,遗传算法在200代陷入局部最优,模拟退火参与后最终适应度为0.0914。误差补偿结果表明:机器人末端位置误差沿X,Y,Z轴方向分别降低了88.05%,81.73%,83.72%,姿态误差分别降低了93.92%,83.64%,83.44%,证明遗传模拟退火算法可以有效辨识机器人几何参数误差,提高误差补偿后的机器人末端位姿精度。  相似文献   

9.
 为提高机器人末端控制精度,围绕基于模型的工业机器人误差参数标定技术,总结了其应用在高精度机械加工制造领域时存在的误差参数不完整、标定成本高和标定精度不满足工业需求等关键问题;综述了误差参数标定模型建模方法、机器人末端位姿测量技术、误差参数辨识技术和误差补偿技术4个方面的进展,分析了处理复杂标定任务时基于模型的误差参数模型标定技术的主要难点进行总结,针对传统建模方法不再满足标定需求、现有自标定技术测量精度不够、传统线性辨识算法在辨识矩阵奇异或存在冗余参数时无法得到准确的辨识结果、如何高效获得和处理测量得到的误差数据等难题,提出了可行性解决方案及发展方向。  相似文献   

10.
本文提出了一种分析Stewart机器人位姿误差的方法,即将各个关节引入的误差以及伺服定位误差对位姿误差的影响,都归算为杆件长度误差引起的位姿误差,并给出了按杆件长度误差计算位姿误差的关系式。  相似文献   

11.
为了提高半闭环微阵列制备机器人的定位精度,根据机器人运动误差具有方向性的特点,提出了分向前馈误差补偿技术。建立了微阵列制备机器人系统误差前馈补偿的传递函数模型,对系统的准确性、快速性与稳定性进行分析,从理论上证明该方法在提高机器人精度方面是可行有效的。研究并实施了回程误差与其他非线性误差的分向补偿算法。在清华大学开发的...  相似文献   

12.
针对Delta并联机器人末端控制精度问题,提出一种基于RBF的提高Delta并联机构运动学控制精度的方法。首先对Delta并联机器人的运动学逆解进行分析,探讨了影响控制精度的因素和现有提高控制精度方法的局限性。其次,求解Delta并联机器人的工作空间,结合实际工作,通过试验采集训练样本。以末端实际位置为输入样本,末端的期望位置与实际位置之差为输出样本,进行RBF神经网络模型训练,得到末端实际位置与位置偏差之间的非线性映射关系,基于此设计位置补偿策略。最后,在Delta机器人平台上进行实验验证,使用训练好的RBF网络结合运动学逆解,对Delta机器人末端进行轨迹跟踪控制。实验结果表明,末端控制误差由±30mm减小到±5mm,有效的减少了末端位置误差,为Delta机器人精准控制提供了一种简单易行的方法。  相似文献   

13.
14.
基于激光跟踪仪的机器人运动学参数标定方法   总被引:4,自引:0,他引:4  
工业机器人的连杆参数误差是影响其绝对定位精度的最主要因素,为改善机器人的绝对定位精度,借助了高精度且可以实现绝对坐标测量的先进测量仪器——激光跟踪仪,以及功能强大的CAM2 Measure 4.0配套软件,从机器人自身的运动约束出发,构建起实际的D—H模型坐标系,进而对运动学参数进行了修正,获得了关节变量与末端法兰盘中心位置在基坐标系下的准确映射关系.结果表明,标定后的平均误差及均方根误差均改善了40%以上,且该方法易于实现,通用性强,能明显改善精度.  相似文献   

15.
数控机床定位误差的软件补偿   总被引:19,自引:3,他引:16  
提出了基于“华工I型”数控系统数控机床的定位的软件补偿方法,该方法克服了等间距定位误差补偿的缺点,使定位误差补偿的位置可随机设定,建立了数控机床定位误差软件补偿的数学模型,在XK713加工中心上进行了补偿实验表明,采用本补偿方法能使机床的定位误差减小70%汉上。  相似文献   

16.
基于视觉的六自由度机械臂运动学参数辨识   总被引:2,自引:0,他引:2  
提出一种新型低成本的基于单目视觉的机器人末端位姿测量方法,设计并实现了六自由度机械臂的运动学参数辨识。采用分级测量方法和标定板绝对编码方法,解决了当前视觉测量过程中测量范围小、测量精度受相机畸变影响大等问题;使用基于位置误差的运动学参数辨识模型和单目视觉测量系统,简化了机器人的标定过程。最后,通过实验验证了方案的实用性和有效性。  相似文献   

17.
为了提高基于压电陶瓷驱动的3-PPSR并联微动机器人的定位精度,将一种电容式微位移传感器集成于并联机构上,采用六点式测量法同时得到并联机器人末端六个自由度的位姿.使用微位移循环修正法进行误差分析和补偿,确定初始误差并在此基础上提出了有效的误差补偿方法.在已有的压电陶瓷闭环控制的基础上,利用测量所得的并联机构末端位姿作为反馈信号,采用模糊PID控制法实现了整个机构的闭环控制.  相似文献   

18.
在对高精度测量机器人、激光跟踪测量系统进行全面分析与系统研究的基础上,提出运用工业机器人与测量机器人对接,工业机器人带动测量机器人在整个工业机器人工作空间进行自动测量的方法.给出了工业机器人带动测量机器人联动测量的结构图和工业机器人空问误差的检测与补偿的流程图,为研究工业机器人末端误差测量提供新的理论与技术支持.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号