首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
本文研究了R为正则PT环时,具有无挠K_0群的群环,证明了:当R为正则局部环或主理想整环且char R≠o时,G为有限生成Abel群,则K_0RG为无挠群.  相似文献   

2.
设R 是有单位元的环,G 是一个群.本文主要证明了:(1)群环RG 是左fp一自内射环当且仅当R 是左fp 一自内射环且G 是局部有限群;(2)RG 是左IF 环当且仅当R 是左IF 环且G 是局部有限群:(3)刻化了凝聚群环和半遗传群环的特征.  相似文献   

3.
设R为有1结合环,G为任意群,本文给出了群环RG为本原环的一个充要条件。  相似文献   

4.
设M是有限生成的拟投射左R-模,那么End(RM)为半完全环的充要条件是M能分解成模直和:M=M1…Mr,其中每个End(RMi)为局部环;设R为整环,那么,对于任意有限生成的拟投射但非投射的R-模M,End(RM)为半完全环的充要条件是R的Krull维数为1和R的每个理想都有准素分解;设R为Dedekind整环,M是有限生成的扭R-模,那么End(RM)为半完全环。  相似文献   

5.
本文主要讨论了当R为交换环,G为有限群时,RG的Levitzki根的一种表示结果。  相似文献   

6.
G-morphic群环   总被引:3,自引:3,他引:0  
本文讨论了左G-morphic群环RG的性质,主要证明了以下结果:设R是一个环,G是一个局部有限群,如果群环RG是左G-morphic环,那么R是左G-morphic环;如果对G的每个有限子群H,群环RH是左G-morphic环,那么群环RG是左G-morphic环.  相似文献   

7.
为了对左拟morphic环进行进一步研究,讨论了左拟morphic群环的性质,并主要给出了以下结论:如果群环RG是一个左拟morphic环,则R是左拟morphic环,G是局部有限群;若G是局部有限群,那么群环RG是左拟morphic环当且仅当对任意的x∈RG,存在G的有限子群H使得x在RH中是左拟morphic的;设...  相似文献   

8.
设R是一个含有非零单位元的有限交换环,U(R)是R的单位群,G是U(R)的一个乘法子群,S是G的一个非空子集并且S-1={s-1|s∈S}S。单位Cayley图Cay(R,U(R))的顶点集是R,两个顶点x和y相邻当且仅当x-y∈U(R);而广义单位Cayley图Γ(R,G,S)的顶点集为R,两个顶点x与y相邻当且仅当存在s∈S,使得x+sy∈G。容易看出,当G=U(R)时,Γ(R,G,{-1})即为单位Cayley图。本文主要利用有限交换环的结构以及群与图的理论,研究了有限交换环上的广义单位Cayley图的一些性质,讨论了Γ(R,G,{s})的正则性,以及Γ(R,U(R),{s})中任意两点的公共邻接点个数和边着色数。  相似文献   

9.
设R是一个含有非零单位元的有限交换环,U(R)是R的单位群,G是U(R)的一个乘法子群,S是G的一个非空子集并且S-1={s-1|s∈S}S。单位Cayley图Cay(R,U(R))的顶点集是R,两个顶点x和y相邻当且仅当x-y∈U(R);而广义单位Cayley图Γ(R,G,S)的顶点集为R,两个顶点x与y相邻当且仅当存在s∈S,使得x+sy∈G。容易看出,当G=U(R)时,Γ(R,G,{-1})即为单位Cayley图。本文主要利用有限交换环的结构以及群与图的理论,研究了有限交换环上的广义单位Cayley图的一些性质,讨论了Γ(R,G,{s})的正则性,以及Γ(R,U(R),{s})中任意两点的公共邻接点个数和边着色数。  相似文献   

10.
研究Π-凝聚环R上的同调方程A=ExtnR(X,R)的一类解的存在性,得到方程A=ExtnR(X,R)以有限生成半自反右R模为解的一个充要条件.  相似文献   

11.
设G是群,R是具有单位元的交换环,RG是G在R上的群代数。令φ∶RG→RG表示定义在G上的一个对合φ的线性扩张,称RG中的一个元x为对称元,若φ(x)=x。在这篇注记中,我们也给出了所有对称元的集合构成环时群G的结构。  相似文献   

12.
研究Π-凝聚环R上的同调方程A=ExtnR(X,R)的一类解的存在性,得到方程A=ExtnR(X,R)以有限生成半自反右R模为解的一个充要条件.  相似文献   

13.
设G和H是两个有限群,R是复数域C中所有代数整数构成的环。用RG表示G在R上的群代数,Z(RG)是RG的中心。在这篇注记中,设Z(RG)丝Z(RH),如果G是内幂零群,那么群H不一定是内幂零群。进一步,群H的结构也可以得到。  相似文献   

14.
∏—凝聚环上的同调方程A=ExtR^n(X,R)   总被引:1,自引:1,他引:0  
研究∏-凝聚环R上的同调方程A=ExtR^n(X,R)的一类解的存在性,得到方程A=ExtN^n(X,R)以有限生成半自反右R模为解的一个充要条件.  相似文献   

15.
半布尔群环     
证明了如果R是一个环,G是一个局部有限群,则群环RG是半布尔环当且仅当R是半布尔环,且G是一个2-群。  相似文献   

16.
设a∈R,如果对环R元素b,满足aR+bR=R,则存在幂等元e∈R,使得a+be有左逆,那么称元素a有幂等稳定度1(记为isr(a)=1).如果对于R中的所有元素a,都有isr(a)=1,那么称环R有幂等稳定度1(记为isr(R)=1).证明了若R是半完全环,G是初等阿贝尔p-群,则isr(RG)=1.另外,若isr(R)=1,G是局部有限p-群,且p∈J(G),则isr(RG)=1.  相似文献   

17.
半布尔群环     
证明了如果只是一个环,G是一个局部有限群,则群环RG是半布尔环当且仅当R是半布尔环,且G是一个2-群。  相似文献   

18.
本文引入了S环,称环R为S环,若R存在有限子集E(?)O,使得对R的每一非零右理想A,都有A∩E≠φ,主要结论是:环R是S环的充要条件是:(Ⅰ)R的每一非零右理想都包含了R的一极小右理想;(Ⅱ)R仅有有限个极小右理想。此结果基本解决了Ssasz一书中的问题94。  相似文献   

19.
设N是有限群G的一个正规子群,γ:G→G是自然满同态以及γ:RG→RG是由γ经过线性扩张得到的一个R-代数满同态,其中R是一个代数整数环。首先证明了γ在Z(RG)上限制,仍是Z(RG)到Z(RG)之间的代数同态。进一步,确定了RG中的类和在γ下的像,同时给出了RG中的类和与RG中的类和之间的一个对应。最后,作为这个对应的应用,得到了有限群G的共轭类与N的陪集之间一个数量关系。  相似文献   

20.
设R是交换环,M是R-模,I是R的有限生成理想,满足∩∞n=0In=0,R^是R的I-adic完备化,M^是M的I-adic完备化.证明了若R是凝聚环,则R^是平坦R-模,且若I(∈)J(R),则R^还是忠实平坦R-模.由此证明了若R^(×)RM是有限生成(有限表现或有限生成投射)的R^-模,则M是有限生成(有限表现或有限生成投射)R-模.最后用Swan的方法证明了若R是凝聚整环,u∈J(R)是素元,∩∞n=0(un)=0,M是不可分解的有限生成投射R-模,则M/uM是不可分解的投射R/(u)-模.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号