首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
无砟轨道复合不平顺对高速行车的影响   总被引:1,自引:0,他引:1  
轨道复合不平顺是由多种垂、横向不平顺叠加而成的复杂随机波,是影响轮轨动态作用和行车稳定的重要因素.为研究高速铁路无砟轨道复合不平顺对行车品质的影响,考虑轮轨间复杂接触关系建立了车辆轨道空间耦合动力学模型,分析了轨向-水平、轨向-高低、轨距-水平、轨距-高低4种复合不平顺的动力影响.结果表明:随着复合不平顺幅值的增加,轮轨力、车体加速度、轮重减载率、脱轨系数等均会增大;轮轨力、舒适性指标和安全性指标随着复合不平顺波长的增大而减小;复合不平顺幅值组合变化时,车辆动力响应对水平、高低不平顺幅值变化的敏感程度高于轨向、轨距不平顺幅值变化.长波不平顺激扰频率与车体自振频率一致或接近时,车体会出现一定的谐振,垂、横向振动加速度有所增加.  相似文献   

2.
采用改进的车-桥耦合系统迭代计算模型,建立了基于虚拟激励法(PEM)的列车-轨道-桥梁竖向随机振动分析模型.采用虚拟激励法将轨道不平顺精确地转化为一系列竖向简谐不平顺的叠加,并运用分离迭代法求解车-桥耦合系统振动方程.以CRH2高速列车通过5跨简支梁桥为例,对改进的车-桥耦合系统迭代计算模型的计算精度和效率进行了验证.结果表明:在保持与传统模型相同计算精度的前提下,改进模型能使计算效率提高5倍左右.通过对列车-轨道-简支梁桥竖向随机振动响应中确定性激励引起的均值和轨道不平顺引起的均方根进行分析可知:桥梁竖向位移主要受列车自重控制,轨道不平顺引起的桥梁竖向位移影响很小;桥梁和车体竖向加速度受轨道不平顺影响显著,改善线路条件能有效提高列车的乘车舒适性;同时,车速越高,桥梁和车辆随机响应的均方根越大,由轨道不平顺引起的耦合系统振动响应的离散度越大.  相似文献   

3.
为高效求解高速铁路大跨钢箱提篮拱桥车-桥耦合振动特性,并考虑列车系统弹簧阻尼系与轮轨接触的非线性特征,充分利用ANSYS和SIMAPCK软件平台各自优势,提出了一套可高效求解复杂车桥耦合系统的分析方法。该方法利用ANSYS作为前处理,建立大跨钢箱提篮拱桥精细化有限元模型,运行Lanczos法进行模态分析,再利用HBMAT命令提取桥梁关键模态信息作为关键输入文件,而列车与轮轨接触在SIMPACK平台构建。通过SIMAPCK读取ANSYS输入的关键数据文件,建立车桥耦合分析的动力学模型。运用SIMPACK中的有限元接口模块(Flex Modal)构建一个质量可以忽略的虚刚体实现列车与桥梁的耦合。最后,以实测南广(南宁—广州)铁路西江特大桥动力响应数据为分析样本,通过计算值与实测值的对比,验证提出的方法的可靠性。结果表明:基于ANSYS和SIMPACK的联合仿真是开展车-桥耦合振动研究的有效方法;由轨道不平顺或轮对蛇行运动引起的周期性激励可能引发横向共振,而发生竖向共振的可能性较小;桥梁结构横向振幅由于受车辆偏载影响较大,单线行车的横向振幅大于双线行车;受激励频率的影响,竖向舒适度指标和加速度可能不随车速单调递增;脱轨系数、轮重减载率、竖向舒适度指标和加速度受活载导致的竖向振动影响较大,而横向舒适度指标和加速度则受偏载效应影响较大。研究结果可为类似桥梁的动力设计提供参考。  相似文献   

4.
为分析某18号高速道岔轨道不平顺的产生原因,使用快速傅里叶变换的方法分析其频率分布,道岔转辙器区与辙叉区的钢轨不平顺是钢轨轧制过程中控制精度不足造成的,其主频波长为0.8 m的倍数。基于车辆-道岔耦合系统动力学理论,研究钢轨轧制不平顺对道岔区垂向轮轨力和轮重减载率的影响,并分析不同车辆通过速度条件下最大轮重减载率的变化规律。研究结果表明:车辆以350 km/h的速度通过道岔时,垂向轮轨力变化较为剧烈,其一阶主频为50.51 Hz,与全线轨道不平顺的一阶主频51.27 Hz基本相同,辙叉区最大轮重减载率超过0.8的限值,且持续时间较长,存在脱轨的可能;道岔区钢轨存在轧制不平顺时,车辆速度对最大轮重减载率影响较为显著,为保证轮重减载率不超过0.8的限值,车辆通过高速道岔时理论上应限速160 km/h,当不存在钢轨轧制不平顺时,车辆速度对最大轮重减载率的影响较小。  相似文献   

5.
以轻轨列车-轨道-桥梁(LTTB)系统建模理论为基础,针对某双线对开轻轨列车通过多跨简支梁桥动力性能分析的工程问题,建立考虑线形变化的有限元模型,并充分考虑各子系统非线性特性、轮轨接触和轨道不平顺等因素;采用轮重减载率、车体振动最大加速度和Sperling指数评价轻轨列车的运行性能,研究了轻轨列车的过桥运行性能以及梁体线形变化对列车运行性能的影响.结果表明:所建有限元模型具有可视化建模、高效稳定求解等特点;随着车速增加,轻轨列车的运行安全性降低、运行平稳性变差;在同一车速条件下,梁体线形变化对轻轨列车运行安全性、平稳性的影响程度不同;针对案例,当梁桥线形变化时,轻轨列车运行性能由轮重减载率控制,在不大于设计速度80km/h运行(如桥墩沉降不大于30mm或梁体下挠/上拱不大于20mm)的条件下,轻轨列车满足运行安全性的要求.  相似文献   

6.
运用弹性系统动力学总势能不变原理及形成矩阵的"对号入座"法则,建立列车-板式无砟轨道-路基竖向振动方程组,分析列车高速运行时,短波随机不平顺对列车-板式无砟轨道-路系统振动特性的影响,并对不同种类随机不平顺对列车-板式无砟轨道-路基系统动力特性的影响进行对比研究.研究结果表明:短波随机不平顺对车体垂向加速度、路基竖向压应力影响很小,对扣件竖向压应力、轨道板及底座板弯曲应力有一定的影响,对轮轨垂向力、钢轨振动加速度、轨道板振动加速度、底座板振动加速度和CA砂浆压应力则有显著的影响,影响超过中长波随机不平顺.研究车体及路基动力特性时可以不考虑短波随机不平顺,研究无砟轨道各部件动力特性时,则应考虑短波随机不平顺.  相似文献   

7.
为了研究非平稳横风对列车-大跨斜拉桥耦合系统的动力响应,首先使用 EMD (经验模态分解)方法对已有实测台风数据进行处理,获得台风的时变平均风速,将风谱中的 平均风速替换成时变平均风速,通过谐波合成法模拟得到非平稳横风脉动风速 . 使用有限元 软件 ANSYS和多体动力学软件 SIMPACK 建立列车-轨道-斜拉桥耦合分析模型,非平稳风荷 载包括时变平均风引起的静风力和非平稳脉动风引起的抖振力. 计算了风-列车-大跨斜拉桥 耦合系统的动力响应,对比分析了平稳风与非平稳风作用下列车和斜拉桥的加速度响应以及 桥上列车的安全舒适性指标. 结果表明:对比平稳风,在非平稳风作用下列车的横向和竖向最 大加速度分别增大了12%和23%,桥梁的横向和竖向最大加速度分别增大了16%和7%,列车 的轮重减载率、轮轨横向力、脱轨系数分别增大了9%、14%和4%,列车的横向Sperling指标有 一定的增大,从而降低了桥上行车的安全性和舒适性;频谱图显示在低频区域内,非平稳风作 用下列车的竖向振动、横向振动和桥梁的横向振动会更加强烈.  相似文献   

8.
为了研究地震对车桥系统耦合振动的影响,采用最小二乘法对地震加速度进行校正拟合,消除位移时程因直接对加速度时程积分出现的漂移现象。根据弹性系统动力学总势能不变值原理及形成矩阵的对号入座法则,将轨道不平顺作为系统的自激激励源,地震作为外部激励,建立考虑地震作用的车桥系统耦合振动方程。并以某钢桁梁桥为例,采用计算机模拟的方法,建立列车和桥梁动力分析的有限元模型,研究地震对车桥系统耦合振动的影响。研究结果表明:在地震作用下,桥梁的动力响应主要取决于地震力,横向地震波对车辆与桥梁的横向动力响应具有非常重要的影响;竖向地震波主要影响车桥系统的竖向振动,对横向振动影响很小;但是,竖向地震波对脱轨系数、轮重减载率、车体竖向加速度的影响较显著,因此,在评判桥上列车的运行安全性时必须考虑竖向地震波的影响。  相似文献   

9.
分析计算了列车运行引起环境振动的振源,即轨道作用于道床的振动加速度机制.建立了轮-轨-道床计算分析模型,将钢轨视为Winkler地基上无限长梁,建立并求解该梁的动力方程,得到列车移动静力产生的轨道振动加速度;根据Hertz接触理论,求得轮轨动接触力,利用Green函数模拟轨道因轨道不平顺和轮轨动接触力作用产生的变形,进而求得轨道不平顺和轮轨动接触力引起的轨道振动加速度;叠加上述两种加速度,即得列车引起环境振动的振源振动加速度;最后将理论计算结果和实测结果进行比较,吻合较好.  相似文献   

10.
高速列车的振动特性直接影响旅客乘坐的舒适性和列车运行的安全性.为了分析不同线路条件和运行速度对高速列车振动特性的影响,建立了车辆-轨道耦合系统模型,并以德国高速轨道谱和我国干线轨道谱产生的轨道随机不平顺作为耦合系统的激励,通过Newmark数值积分和Matlab仿真,计算了高速车辆在高速线路和提速干线条件下车体、构架、轮对等车辆各部件和轨道部件的振动响应.研究结果表明,随着列车运行速度的提高,高速车辆各部件振动响应均显著增大;线路条件对高速列车轮对及轨道系统振动的影响较对车体系统振动的影响明显.  相似文献   

11.
收缩徐变效应在高速铁路混凝土桥梁的施工和建造过程中是不可避免的,其会引起桥梁的变形,诱发高速列车运行安全平稳性受到影响。针对该问题,首先选取中国高速铁路中大量采用的32 m简支箱梁桥结构,考虑结构配筋及施工步骤,建立有限元模型,采用JTG2012标准中的收缩徐变模型,分析收缩徐变引起的桥面变形。在此基础上,基于列车-轨道-桥梁动力相互作用理论,将收缩徐变导致的桥面变形视为边界条件,建立考虑收缩徐变的高速列车-轨道-桥梁耦合动力学模型。最后,借助该模型,研究收缩徐变效应对高速列车乘坐舒适性和运行安全性的影响规律。研究结果表明:收缩徐变效应主要影响高速列车的动态特性,而对轨道和桥梁结构的动力学行为影响较小;在收缩徐变效应下,高速列车运行安全性和乘坐舒适性可以得到保证。  相似文献   

12.
为研究列车-大跨度板桁结构斜拉桥耦合振动引起的整体与局部振动响应问题,提出了基于车-桥耦合动力学的数值分析方法.首先建立桥梁结构精细化三维有限元模型,并由直接刚度法建立桥梁子系统动力方程;列车采用31自由度刚体动力学模型,轮轨之间分别采用赫兹非线性接触模型和非线性蠕滑力模型计算法向力和蠕滑力;利用自主开发软件TRBF-DYNA开展车-桥耦合系统加速度、动位移以及动应力分析.以主跨406m的三塔斜拉桥荆岳铁路洞庭湖大桥为研究对象,开展了不同行车线路、不同车速以及不同轨道不平顺条件下的耦合系统动力响应分析,研究了桥梁整体和局部动力响应,以及列车运行安全性指标和乘坐舒适性指标的变化规律.结果表明:正交异性钢桥面板的局部动力响应远大于钢桁架主梁;大跨度斜拉桥的动力系数较小,受车速和轨道不平顺谱的影响较小;钢桁架主梁下弦杆和腹杆处于高周疲劳应力工作状态,在疲劳性能研究中需要特别关注;设计速度条件下,桥梁动力响应指标以及列车运行安全性和舒适性指标均满足规范要求.  相似文献   

13.
为研究节点刚域对钢-混组合桁架梁桥行车动力响应的影响规律,以某新建桥梁为例,利用自主开发的TRBF-DYNA软件开展列车-轨道-桥梁耦合系统振动响应研究.分别采用有限元方法建立考虑节点刚域的轨道-桥梁子系统整体三维模型;采用多刚体动力学方法建立31自由度车辆子系统模型,应用轮轨空间滚动接触模型模拟轮轨间可分离的接触关系.首先分析了节点刚域对桥梁自振特性的影响;继而研究了节点刚域和行驶线路对列车走行性以及桥梁整体和局部杆件动力响应的影响.结果表明:考虑节点刚域显著提高桥梁刚度;同时,桥梁的竖向振动位移峰值和加速度峰值减小30.00%~35.15%;钢腹杆内力显著提升,其中弯矩会增大90.41%~224.02%;但节点刚域对列车行车安全性指标影响较小.双线行车较单线行车引起的桥梁动力响应显著增强,其中横竖向加速度峰值将分别增大114.29%和100%;钢腹杆的应力有所增加,但并非成倍增加.建议在研究钢-混组合桁架梁桥行车动力响应时考虑节点刚域的影响.  相似文献   

14.
主要研究脉动风与列车荷载同时作用下斜拉桥的横向振动问题。首先建立了横风作用下并考虑了轨道不平顺和车辆蛇行的车桥系统动力分析模型,推导了体系平衡方程组,编制了有关的计算机程序;根据Darvenport风速功率谱模拟产生脉动风样本,并将其作为系统的随机激励,在计算机上模拟列车过桥的全过程,按不同车速计算了桥梁跨中和桥塔的横向位移、加速度以及桥上车辆的横向振动加速度响应。以一铁路斜拉桥为例,着重讨论了在正常使用极限状态下当风速小于30m/s时的车桥系统动力响应的一些问题。  相似文献   

15.
研究高速铁路双线简支梁桥的空间振动响应.建立了考虑双线简支梁在车辆蛇行和单线行车时的偏心荷载作用下车桥系统空间耦联作用的振动力学分析模型,以20m和48m简支梁桥为例,在计算机上模拟列车过桥的全过程,通过分析动力响应,得出了一些有工程意义的结论.  相似文献   

16.
铁路桥梁的动力行为(动挠度、动加速度)是桥上高速列车运行安全控制的重要指标之一。为此,基于列车动力指纹线和桥梁动力指纹线的概念,将列车激励简化为一组移动集中力,从理论上推导出了列车动力指纹线的数学表达式,提出了简支梁跨中竖向最大加速度的简化计算方法,据此得到车桥发生共振时列车速度,从而可以快速计算简支桥梁的动力行为。通过实例验证了文中方法的可行性,并分析了车桥共振的发生机理、影响参数,以及桥梁加速度计算时高频成分的影响。  相似文献   

17.
为研究龙卷风作用下大跨度桥梁车-轨-桥系统动力响应及行车安全性,首先以Kou-wen三维模型模拟龙卷风速度场,基于准定常理论确定了移动龙卷风作用下车辆和桥梁风荷载时程. 然后,分别采用多体系统动力学和有限元理论建立列车和轨道-桥梁子系统动力方程,基于轮轨空间非线性接触建立风-车-轨-桥系统动力方程,并采用分离迭代法求解系统动力响应. 数值算例中,以某公路铁路两用斜拉桥为研究对象,通过风洞试验和CFD数值模拟确定车辆和桥梁气动力系数,分析了龙卷风移动路径、强度等级和行车速度对车-桥系统动力响应及列车行车安全性的影响. 结果表明:桥梁竖向振动响应比横向显著,且龙卷风竖向风速对桥梁竖向位移起控制作用 . 当车辆经过风荷载最大位置时,车辆的横向和竖向振动响应均达到最大值,且车辆动力响应受龙卷风荷载和桥梁动力响应共同影响. EF1级和EF1.3级龙卷风作用下,列车安全通过的车速阈值分别为180 km/h和114 km/h.  相似文献   

18.
主要讨论地震荷载作用时车桥系统的动力响应特征及对行车稳定性的影响。建立了地震作用下综合考虑输入地震波、轨道不平顺和车辆蛇行运动的车桥体系振动的动力分析模型,推导了体系动力平衡方程组。通过对系统输入各种典型的地震波,在计算机上模拟了列车过桥的全过程动力响应。计算了桥梁的线性和非线性响应,研究了列车荷载及桥梁下部结构刚度对地震响应的影响,以一座刚梁柔拱组合系桥为例,研究地震发生时桥上列车的运行稳定性和这种桥梁的位移、速度和加速度等动力响应特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号