首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
混凝土徐变对柔性车体列车-桥梁系统动力响应影响分析   总被引:1,自引:0,他引:1  
为了解决高速铁路混凝土简支梁桥徐变引起桥上轨道结构发生附加变形,进而影响桥上列车运营品质的问题,建立了柔性车体列车-桥梁系统动力分析模型,并以高速铁路常见跨度32m和24m预应力混凝土简支梁为例,分析了混凝土徐变对桥上CRTS III型无砟轨道结构附加变形的影响特点,并进一步研究了轨道结构附加变形对桥上列车运行安全性及平稳性的影响规律.研究结果表明:延长铺轨时间可有效防止混凝土桥梁工后徐变引起的轨道结构附加变形量超出规范限值;梁体徐变下挠情况会使梁端区域的轨道结构出现凸起折角,列车通过这一折角时轮对动轴重会急剧减小,可能出现"轮轨分离";梁体徐变对运行舒适性指标的影响远大于对运行安全性指标的影响,同时,忽略车体柔性会低估梁体徐变对车辆运行舒适性的影响.  相似文献   

2.
轨道不平顺作为车-桥耦合振动的主要激励源,直接影响桥梁及高速列车运行的安全性和舒适性.为研究轨道不平顺中短波分量对列车-简支梁桥耦合系统动力响应的影响规律,以高速铁路32m简支箱梁为例,采用德国高速低干扰轨道不平顺谱生成轨道不平顺样本,建立了列车-轨道-桥梁耦合系统空间动力学分析模型.对比分析了5种不同最短截止波长的轨道不平顺样本对耦合系统振动响应的影响规律.研究结果表明:轨道不平顺样本中1m左右的短波长分量会显著增加轮轨力、轮重减载率、脱轨系数和桥梁跨中加速度,但对桥梁跨中位移、轮轨偏移量和车辆振动加速度的影响较小;1~2m的短波长成分是引起轮重减载率超标的主要因素,减少轨道不平顺中1~2m的短波长分量可以有效提高列车行车安全性指标.  相似文献   

3.
在车轨耦合动力学理论的基础上,通过对高速列车-无砟轨道-路基耦合系统模型有限元进行分析,研究高速铁路路基不均匀冻胀对列车、轨道的动力学影响,分析不同条件下冻胀变形引起的系统振动响应规律,进而提出相关改善措施以利于系统良性发展.结果表明,路基不均匀冻胀会引起列车与轨道产生互相影响的动态响应,降低了轨道结构的服役性能,同时不利于行车安全.在典型冻胀情况下,列车进入冻胀区域后,在起始位置受到振动所造成的影响比较大;随着路基冻胀波长的增加,对车体的振动影响相继减少,而冻胀峰值的影响则相反.对冻胀波长25 m范围内,特别是10~15 m路基冻胀进行整治,可增强行车安全性和乘坐的舒适性.同时,重点控制路基高冻胀峰值能有效减少轨道结构的疲劳损伤.  相似文献   

4.
为研究列车-大跨度板桁结构斜拉桥耦合振动引起的整体与局部振动响应问题,提出了基于车-桥耦合动力学的数值分析方法.首先建立桥梁结构精细化三维有限元模型,并由直接刚度法建立桥梁子系统动力方程;列车采用31自由度刚体动力学模型,轮轨之间分别采用赫兹非线性接触模型和非线性蠕滑力模型计算法向力和蠕滑力;利用自主开发软件TRBF-DYNA开展车-桥耦合系统加速度、动位移以及动应力分析.以主跨406m的三塔斜拉桥荆岳铁路洞庭湖大桥为研究对象,开展了不同行车线路、不同车速以及不同轨道不平顺条件下的耦合系统动力响应分析,研究了桥梁整体和局部动力响应,以及列车运行安全性指标和乘坐舒适性指标的变化规律.结果表明:正交异性钢桥面板的局部动力响应远大于钢桁架主梁;大跨度斜拉桥的动力系数较小,受车速和轨道不平顺谱的影响较小;钢桁架主梁下弦杆和腹杆处于高周疲劳应力工作状态,在疲劳性能研究中需要特别关注;设计速度条件下,桥梁动力响应指标以及列车运行安全性和舒适性指标均满足规范要求.  相似文献   

5.
高速列车的振动特性直接影响旅客乘坐的舒适性和列车运行的安全性.为了分析不同线路条件和运行速度对高速列车振动特性的影响,建立了车辆-轨道耦合系统模型,并以德国高速轨道谱和我国干线轨道谱产生的轨道随机不平顺作为耦合系统的激励,通过Newmark数值积分和Matlab仿真,计算了高速车辆在高速线路和提速干线条件下车体、构架、轮对等车辆各部件和轨道部件的振动响应.研究结果表明,随着列车运行速度的提高,高速车辆各部件振动响应均显著增大;线路条件对高速列车轮对及轨道系统振动的影响较对车体系统振动的影响明显.  相似文献   

6.
建立某巨型支撑外框架-核心筒超高层结构的空间有限元模型,基于CEB-FIP(1990)模型计算混凝土收缩徐变效应,按实际工况考虑施工分层加载的影响,分析该结构在实际荷载作用下的竖向位移效应,并将计算结果与现场实测数据进行了对比分析.结果表明:收缩徐变效应对该结构的竖向变形影响较大,框架柱与核心筒的时变性能差异将产生较大的层间位移差;考虑收缩徐变的施工过程分析可以较准确地模拟超高层框架-核心筒结构的竖向位移状况.  相似文献   

7.
采用改进的车-桥耦合系统迭代计算模型,建立了基于虚拟激励法(PEM)的列车-轨道-桥梁竖向随机振动分析模型.采用虚拟激励法将轨道不平顺精确地转化为一系列竖向简谐不平顺的叠加,并运用分离迭代法求解车-桥耦合系统振动方程.以CRH2高速列车通过5跨简支梁桥为例,对改进的车-桥耦合系统迭代计算模型的计算精度和效率进行了验证.结果表明:在保持与传统模型相同计算精度的前提下,改进模型能使计算效率提高5倍左右.通过对列车-轨道-简支梁桥竖向随机振动响应中确定性激励引起的均值和轨道不平顺引起的均方根进行分析可知:桥梁竖向位移主要受列车自重控制,轨道不平顺引起的桥梁竖向位移影响很小;桥梁和车体竖向加速度受轨道不平顺影响显著,改善线路条件能有效提高列车的乘车舒适性;同时,车速越高,桥梁和车辆随机响应的均方根越大,由轨道不平顺引起的耦合系统振动响应的离散度越大.  相似文献   

8.
为了研究钢-混组合桥面板收缩徐变效应对双层桥面钢桁桥的影响,以广东东江大桥——刚性悬索加劲钢桁梁桥为工程背景,采用有限元法,分析了不同加载龄期下混凝土收缩徐变对桥面板应力以及跨中挠度的影响,选择了合适的收缩徐变计算方法,考虑混凝土弹性模量的时变效应,并针对大桥受力特点,研究了180 d加载龄期下混凝土收缩徐变对其主桁及加劲弦应力的影响。分析结果表明:加载龄期越长,收缩徐变效应对钢桁桥的影响越小;收缩效应对桥面板应力影响较大,而徐变效应影响较小,总体不到收缩效应的30%;收缩徐变对主桁某些部位杆件应力影响较大,将使主桁跨中上弦杆应力增加22%,但对加劲弦应力及跨中挠度影响较小。总体而言,由于加劲弦及双层桥面的结构特点,收缩徐变效应对东江大桥力学性能的影响呈较强的空间性。  相似文献   

9.
利用考虑时间因子的有限元方法研究了钢框架-钢筋混凝土核心筒混合体系的竖向变形差问题.分析表明,施工方案中的时间参数可以确定结构计算中需要考虑的混凝土收缩徐变的数量和参与作用的时间,从而使混凝土收缩徐变对体系竖向变形差以及各构件内力分配的影响发生明显变化.适当增大结构混凝土部分相对于钢结构部分提前施工的层数是减小混凝土收缩徐变效应的较好方法.  相似文献   

10.
针对混凝土的时变变形对钢管混凝土组合结构施工过程中结构受力的影响,基于CEB-FIP中的混凝土时变模型,提出了对钢管混凝土组合高层框架结构进行施工过程计算的时变模型,以考虑结构的施工顺序和诸如混凝土的收缩、徐变等时变效应的影响以反映此类结构的真实特性.通过某21层钢混组合高层框架结构的数值模拟与现场监测结果的对比表明:提出的分析模型能够真实反映结构复杂的施工过程及材料时变特征和结构几何非线性对结构性能的影响,数值模拟结果表明混凝土收缩和徐变引起的结构变形在高层结构设计中不容忽视.  相似文献   

11.
为研究节点刚域对钢-混组合桁架梁桥行车动力响应的影响规律,以某新建桥梁为例,利用自主开发的TRBF-DYNA软件开展列车-轨道-桥梁耦合系统振动响应研究.分别采用有限元方法建立考虑节点刚域的轨道-桥梁子系统整体三维模型;采用多刚体动力学方法建立31自由度车辆子系统模型,应用轮轨空间滚动接触模型模拟轮轨间可分离的接触关系.首先分析了节点刚域对桥梁自振特性的影响;继而研究了节点刚域和行驶线路对列车走行性以及桥梁整体和局部杆件动力响应的影响.结果表明:考虑节点刚域显著提高桥梁刚度;同时,桥梁的竖向振动位移峰值和加速度峰值减小30.00%~35.15%;钢腹杆内力显著提升,其中弯矩会增大90.41%~224.02%;但节点刚域对列车行车安全性指标影响较小.双线行车较单线行车引起的桥梁动力响应显著增强,其中横竖向加速度峰值将分别增大114.29%和100%;钢腹杆的应力有所增加,但并非成倍增加.建议在研究钢-混组合桁架梁桥行车动力响应时考虑节点刚域的影响.  相似文献   

12.
以轻轨列车-轨道-桥梁(LTTB)系统建模理论为基础,针对某双线对开轻轨列车通过多跨简支梁桥动力性能分析的工程问题,建立考虑线形变化的有限元模型,并充分考虑各子系统非线性特性、轮轨接触和轨道不平顺等因素;采用轮重减载率、车体振动最大加速度和Sperling指数评价轻轨列车的运行性能,研究了轻轨列车的过桥运行性能以及梁体线形变化对列车运行性能的影响.结果表明:所建有限元模型具有可视化建模、高效稳定求解等特点;随着车速增加,轻轨列车的运行安全性降低、运行平稳性变差;在同一车速条件下,梁体线形变化对轻轨列车运行安全性、平稳性的影响程度不同;针对案例,当梁桥线形变化时,轻轨列车运行性能由轮重减载率控制,在不大于设计速度80km/h运行(如桥墩沉降不大于30mm或梁体下挠/上拱不大于20mm)的条件下,轻轨列车满足运行安全性的要求.  相似文献   

13.
研究高速铁路双线简支梁桥的空间振动响应.建立了考虑双线简支梁在车辆蛇行和单线行车时的偏心荷载作用下车桥系统空间耦联作用的振动力学分析模型,以20m和48m简支梁桥为例,在计算机上模拟列车过桥的全过程,通过分析动力响应,得出了一些有工程意义的结论.  相似文献   

14.
为研究铁路桥梁徐变上拱对于梁轨相互作用的影响,分别建立了三跨连续梁桥及简支梁桥的梁轨相互作用有限元模型,分析了徐变上拱对桥上无缝线路的钢轨附加应力、扣件上拔力、扣件剪切力以及列车走行性的影响.结果表明:徐变上拱值主要影响扣件上拔力和行车舒适度,而对钢轨附加应力的影响可以忽略;徐变拱跨比相同的梁桥所导致的钢轨应力、扣件上拔力及扣件剪切力峰值基本一致;对于该研究的主跨125 m的连续梁桥和跨径30 m的简支梁桥而言,徐变拱跨比的建议限值分别为1/2 500和1/2 000.  相似文献   

15.
以盾构下穿某高速铁路简支梁桥为工程背景,运用有限元软件Midas/GTS建立盾构隧道先后下穿高铁桥梁模型,分析盾构下穿时列车荷载作用下高速铁路简支桥梁动力响应。研究首先分析了当盾构开挖至桥梁近侧,列车以不同速度200~350km.h-1、不同轴重110~220kN运行时对高速铁路简支梁桥墩顶沉降的影响。接着探讨在不同开挖阶段下,速度200 km.h-1轴重110kN的列车动荷载冲击下高铁桥梁墩台顶变形规律。结果表明:盾构开挖至桥梁近侧时,不同速度、轴重列车荷载冲击下,高铁桥梁墩台顶的变形规律基本一致,其沉降在一定时间达到峰值,其后迅速降低并稳定在某一波动范围内;随着列车速度与轴重的增加,墩台顶沉降峰值越大;盾构开挖时,列车时速低于200 km.h-1、轴重小于110kN时其墩台顶沉降峰值当满足高铁桥梁单墩顶竖向沉降控制标准,与列车速度相比,列车轴重对桥梁的动力响应影响更大;列车动荷载作用下,盾构隧道开挖对高铁桥梁墩顶变形的影响主要为盾构开挖至桥梁近侧的初开挖阶段,盾构开挖远离桥侧后墩顶变形基本处于稳定状态。  相似文献   

16.
为研究龙卷风作用下大跨度桥梁车-轨-桥系统动力响应及行车安全性,首先以Kou-wen三维模型模拟龙卷风速度场,基于准定常理论确定了移动龙卷风作用下车辆和桥梁风荷载时程. 然后,分别采用多体系统动力学和有限元理论建立列车和轨道-桥梁子系统动力方程,基于轮轨空间非线性接触建立风-车-轨-桥系统动力方程,并采用分离迭代法求解系统动力响应. 数值算例中,以某公路铁路两用斜拉桥为研究对象,通过风洞试验和CFD数值模拟确定车辆和桥梁气动力系数,分析了龙卷风移动路径、强度等级和行车速度对车-桥系统动力响应及列车行车安全性的影响. 结果表明:桥梁竖向振动响应比横向显著,且龙卷风竖向风速对桥梁竖向位移起控制作用 . 当车辆经过风荷载最大位置时,车辆的横向和竖向振动响应均达到最大值,且车辆动力响应受龙卷风荷载和桥梁动力响应共同影响. EF1级和EF1.3级龙卷风作用下,列车安全通过的车速阈值分别为180 km/h和114 km/h.  相似文献   

17.
铁路地下直径线橡胶浮置板道床钢轨变形限值研究   总被引:1,自引:0,他引:1  
浮置板道床能有效减小铁路振动的影响,因此可将其应用于穿越人口密集区的铁路地下直径线。为了确保行车的安全性和舒适性,有必要对铁路运营下浮置板道床钢轨的合理变形限值进行研究。基于有限元法,建立了车辆-橡胶浮置板道床耦合动力学模型,对SS9列车100 km/h速度下车辆、钢轨、浮置板等部件的动力学特性进行了研究,并从行车安全性和平稳性方面提出了浮置板道床钢轨的变形限值建议值。研究表明:橡胶垫面刚度小于0.02 N/mm3时,轨道结构产生较大垂向位移;100 km/h速度条件下,铁路橡胶浮置板道床钢轨垂向变形限值取4 mm时,能满足行车安全性和平稳性要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号