首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
综合类   13篇
  2024年   1篇
  2019年   3篇
  2017年   1篇
  2016年   1篇
  2014年   3篇
  2013年   3篇
  2012年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
为揭示严寒地区高速铁路路基冻胀变形对无砟轨道平顺性的影响,建立CRTS Ⅰ型板式无砟轨道-路基空间耦合有限元模型,分析了不同路基冻胀条件下轨道结构的变形特征,探讨了层间离缝的发展演变过程,以及层间粘结强度和底座板刚度对离缝发展的影响规律.结果表明:路基冻胀位置对轨道结构变形影响较大,冻胀变形基本能反映到轨面,当冻胀作用在轨道板中间位置时,底座板与基床表层之间的离缝值最大;最大离缝值随冻胀量增加呈线性增长,随冻胀波长的增大而减小;离缝在轨道结构横向位置是从中间向两边逐渐扩展的;随着底座板与基床表层之间粘结强度的增大,层间离缝值和离缝长度逐渐减小;离缝值随着底座板刚度的减小而减小,当底座板刚度减小为原来的60%时,离缝值减小了近20%.  相似文献   
2.
3.
4.
为整治北京地铁钢轨的异常波磨,基于工程类比法,从轨道刚度的角度研究钢轨异常波磨的成因及整治措施.以北京地铁4号线钢轨异常波磨为研究对象,工程类比无钢轨异常波磨的北京地铁1号线和2号线,选取具有代表性的典型曲线试验段,采用轨道刚度测试仪对轨道垂向、横向刚度进行了现场测试.结果表明:轨道横向刚度低是导致曲线地段钢轨异常波磨的直接诱因,轨道垂向刚度对钢轨异常波磨的影响不大;适当增加轨道横向刚度使轨道垂横向刚度比小于3,可较好地避免钢轨异常波磨的产生.现场整治试验段表明,提高轨道横向刚度后,钢轨异常波磨得到了较好的控制.  相似文献   
5.
路基上CRTSⅢ型板式无砟轨道结构设计方案分析   总被引:2,自引:0,他引:2  
路基上CRTS(China railway track system)Ⅲ型板式无砟轨道结构存在单元式和纵连式两种设计方案.通过建立纵横垂向空间耦合有限元计算模型,对两种设计方案在温度荷载、列车荷载、混凝土收缩及基础沉降变形作用下的力学特性进行了计算与对比分析.计算结果表明:对于严寒地区,基于温度荷载的影响较大以及轨道的可维修性,建议采用单元式结构.  相似文献   
6.
无砟轨道复合不平顺对高速行车的影响   总被引:1,自引:0,他引:1  
轨道复合不平顺是由多种垂、横向不平顺叠加而成的复杂随机波,是影响轮轨动态作用和行车稳定的重要因素.为研究高速铁路无砟轨道复合不平顺对行车品质的影响,考虑轮轨间复杂接触关系建立了车辆轨道空间耦合动力学模型,分析了轨向-水平、轨向-高低、轨距-水平、轨距-高低4种复合不平顺的动力影响.结果表明:随着复合不平顺幅值的增加,轮轨力、车体加速度、轮重减载率、脱轨系数等均会增大;轮轨力、舒适性指标和安全性指标随着复合不平顺波长的增大而减小;复合不平顺幅值组合变化时,车辆动力响应对水平、高低不平顺幅值变化的敏感程度高于轨向、轨距不平顺幅值变化.长波不平顺激扰频率与车体自振频率一致或接近时,车体会出现一定的谐振,垂、横向振动加速度有所增加.  相似文献   
7.
基于梁-轨相互作用理论建立线-板-桥-墩空间耦合模型,研究了无砟轨道简支梁桥墩纵向刚度对钢轨附加力及断缝值的影响,给出了市域铁路简支梁桥墩纵向刚度限值的控制因素及合理值.结果表明:增大桥墩纵向刚度可减小钢轨附加总应力和梁-轨相对位移,不同于有砟轨道简支梁桥,市域铁路无砟轨道简支梁桥墩纵向刚度限值由钢轨强度控制;建议24,32,48 m简支梁桥上铺设U71Mn钢轨和常阻力扣件,温暖区域桥墩刚度限值分别取5,6和15 MN/m,寒冷区域取5,12和54 MN/m;64 m和80 m简支梁上铺设U75V钢轨和常阻力扣件,温暖区域刚度限值分别取22 MN/m和70 MN/m,寒冷区域取84 MN/m和240 MN/m;当寒冷区域80 m简支梁桥两侧梁端铺设小阻力扣件时,桥墩刚度限值可减小至84 MN/m.  相似文献   
8.
与普通简支梁桥和连续梁桥相比,千米级主跨斜拉桥上的无缝线路受力与变形更为复杂.在充分考虑梁轨间的相互作用原理基础上,建立了无缝线路-梁-索-塔-墩空间耦合有限元模型,分析了千米级主跨斜拉桥上无缝线路的受力与变形特性.结果表明:千米级主跨斜拉桥温度跨度大,梁体温度变化会导致产生较大的伸缩附加力;主塔与斜拉索温度变化对于伸缩附加力影响不大;相比于铁路荷载单独作用,公铁荷载共同作用会使桥上无缝线路挠曲附加力大幅增加,其引起的轨道不平顺值满足规范要求;桥上铺设常阻力或小阻力扣件时,钢轨强度和稳定性不能满足规范要求,需在主梁两端铺设钢轨伸缩调节器;由桥梁温度变化及制动荷载引起的伸缩总量近700mm,考虑其他不利因素的影响,建议选用±900mm及以上伸缩调节器结构.  相似文献   
9.
在大跨度连续梁上铺设CRTS Ⅰ型板式无砟轨道结构,并且考虑高速车辆的动力作用之后,其梁轨相互作用机理更加复杂.基于ABAQUS软件,建立高速铁路长大桥梁CRTSⅠ型板式无砟轨道无缝线路纵横垂向空间耦合动力学模型,可以对高速条件下高速车辆、无缝线路钢轨、无砟轨道和长大桥梁各细部结构的动力学特性进行研究.经计算和检算可知,在铺设CRTS Ⅰ型板式无砟轨道无缝线路的(80+ 128+ 80)m连续梁上运行时速350 km的高速车辆,其各项动力学计算结果均满足动力学检算标准.  相似文献   
10.
粘滞性阻尼器在高速铁路长联大跨连续梁中的应用   总被引:3,自引:0,他引:3  
以杭州钱江铁路新桥主桥(45+65+14×80+65+45)m预应力混凝土连续箱梁为工程背景,利用有限元软件Midas/civil建立有限元模型。采用非线性时程分析方法计算设置粘滞性阻尼器前后墩底反力和墩顶位移的变化,从而评价粘滞性阻尼器对提升桥梁抗震性能的作用。结果表明:粘滞性阻尼器的合理设置可以减小制动墩内力,提升高速铁路长联大跨连续梁的抗震性能。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号