首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
探讨了高粱泡果实红色素的提取条件及大孔吸附树脂对其吸附和洗脱特性.结果表明,高粱泡果实红色素的最适提取剂为酸性EtOH.3种大孔树脂中,X-5型树脂对高粱泡果实红色素的吸附和洗脱性能较好,吸附率达96.17%,解吸率为94.40%,适宜用作高梁泡果实红色素的分离、纯化;适当的色素液浓度、流速、NaCl质量分数及温度均可增大X-5型树脂对色素的吸附率,而用80%~95%EtOH作为洗脱剂,洗脱效果最好.  相似文献   

2.
用动态法将树脂预处理后,用来吸附分离黄瑞木果实红色素,结果表明:X-5树脂对黄瑞木红色素的吸附效果最好.温度对树脂的吸附效果影响不显著,在室温下,吸附能力较好.被吸附的黄瑞木果实红色素用φ(乙醇)为95%洗脱为宜,洗脱适宜温度为室温(20~23 ℃).通过正交实验得出树脂吸附的最佳组合条件:色素液流速为1 mL/min,质量浓度为0.7 g/mL,温度为20 ℃.  相似文献   

3.
采用大孔吸附树脂对红花红色素进行精制,并对大孔吸附树脂进行了优选;研究了不同条件下X-5树脂对红花红色素的吸附和解吸性能.结果表明:X-5树脂对红花红色素具有良好的吸附和解吸性能,其吸附效果在室温、pH 7.0~9.0的条件下较好;采用pH 7.0~9.0、60%乙醇溶液进行洗脱,解吸效果较好.  相似文献   

4.
通过比较5种吸附树脂对柚皮甙的吸附能力,选择了对柚皮甙吸附能力较强,且容易洗脱的吸附树脂X-5,实现了柚皮甙的吸附分离.研究了提取液浓度、pH值、流速等因素对柚皮甙在该树脂上吸附的影响,同时考察了解吸时洗脱剂浓度、pH值、流速等因素对柚皮甙在吸附树脂上解吸的影响.研究结果表明:柚皮甙在X-5大孔吸附树脂的吸附行为可以用Langmuir方程进行描述;当提取液质量浓度为2.7 g/L时,树脂具有最大饱和吸附容量32.6 mg/g;pH值对其吸附影响较弱;当每小时通过的溶剂体积为树脂体积的2倍时,动态吸附时动态饱和吸附容量为23.8 mg/g;pH约为10、体积分数为60%的乙醇水溶液为最佳洗脱剂;当每小时通过的洗脱剂体积为树脂体积的1~2倍时,洗脱率可达85%以上.  相似文献   

5.
大孔吸附树脂浓缩火龙果色素的研究   总被引:9,自引:0,他引:9  
探讨了吸附和洗脱火龙果色素的方法和条件.该色素在535nm处有最大吸收峰.S 8型大孔吸附树脂对火龙果色素具有较好的吸附能力.乙醇浓度对树脂上色素的解吸有影响,当浓度为40%时解吸效果最好.考察了不同进样速度下树脂柱的泄漏和不同的酸浓度对洗脱峰的影响,结果选择1.5mL/min的进样速度及0.2%HCl 40%乙醇溶液为洗脱剂.经吸附-洗脱循环,色素液浓缩17倍以上,回收率达93.4%,且色素浓缩液具有较好的稳定性.  相似文献   

6.
对XAD-1180型大孔吸附树脂对羟基钴胺素的吸附与洗脱性能进行了研究.采用紫外分光光度计检测羟钴胺素的浓度,确定出树脂对羟钴胺素的静态吸附量、吸附率、洗脱率以及动态吸附量和洗脱率.结果显示,优化的吸附条件为初始浓度1000mg·L-1,温度30℃,用70%丙酮-水溶液做洗脱剂可达到97.5%的洗脱率.静态饱和吸附量为261.3mg·g-1干树脂.动态泄露吸附量为49.8mg·g-1干树脂,洗脱率为97.1%,洗脱液总浓度为8636.4mg·L-1,可直接用来结晶.  相似文献   

7.
X-5树脂吸附分离海边月见草叶总黄酮的影响因素   总被引:2,自引:1,他引:2  
采用3种大孔吸附树脂对海边月见草叶总黄酮进行吸附纯化,筛选出适宜的树脂X-5,考察了原液质量浓度、pH值、温度、树脂用量等因素对该树脂静态吸附的影响,以及洗脱剂乙醇体积分数对静态解吸效果的影响.结果表明:X-5树脂对海边月见草叶总黄酮有良好的吸附纯化性能,当原液质量浓度为1.250m g.mL-1时,树脂达饱和吸附量12.08 m g.g-1(湿质量);在室温、振荡条件下,提取液pH值4.0~4.5时,树脂具有较好的吸附效果;而适宜的洗脱剂为体积分数50%~70%的乙醇溶液,70%乙醇的解吸率为71.27%.  相似文献   

8.
研究大孔吸附树脂纯化准噶尔山楂色素的条件,通过方差分析确定纯化条件。结果表明:X-5树脂吸附和解吸附效果较好,最佳吸附条件是树脂柱径高比1:15、流速3 mL/min、pH3.0、色素液浓度1 g/L;以95%乙醇做洗脱剂、pH2.0、流速5mL/min、3倍于柱床体积的洗脱剂条件下解吸附效果最佳。制取的色素产品外观呈紫红色,色价为28.43。  相似文献   

9.
陈智理  杨昌鹏  廖贵珍  全玉姣 《科技信息》2011,(20):I0003-I0004
用X-5、AB-8、S-8三种不同型号树脂对杨梅红色素进行吸附与解吸。其结果表明,不同型号树脂对该色素的吸附及解吸效果均有所不同。各种型号树脂对该色素的静态吸附效果顺序为AB-8﹥X-5﹥S-8,解吸效果为X-5﹥S-8﹥AB-8。采用X-5树脂对杨梅红色素进行动态吸附与洗脱。其结果表明,X-5树脂对杨梅红色素的动态吸附量随上柱样液浓度的降低、上柱流速的增加而减少。不同浓度的洗脱液对杨梅红色素的解吸效果也有一定的影响。用70%的乙醇进行洗脱,其洗脱峰窄,洗脱曲线对称性好,解吸效果最好。  相似文献   

10.
黑米皮花色苷的大孔树脂吸附纯化研究   总被引:7,自引:0,他引:7  
摘要:比较了5种大孔吸附树脂对黑米皮花色苷( Black Rice Anthocyanins, BRA)的吸附纯化效果,研究了AB-8型大孔树脂对BRA的吸附与解吸特性.结果表明:AB-8大孔树脂对BRA具有较好的吸附和解吸能力,是吸附纯化BRA的最佳树脂类型,其分离纯化BRA的最佳工艺参数为:上柱液pH 值=2,样品质量浓度1.0mg/mL,吸附流速1.0mL/min,以体积分数为70%乙醇为解吸剂,洗脱速度为1.0mL/min. 树脂的重复利用率好,使用5次后吸附率无显著性差异(P0.05),使用7次后,吸附率仅降低2.58%. BRA经AB-8大孔树脂纯化后,花色苷含量提高2.38倍,总抗氧化能力提高3.99倍.  相似文献   

11.
图集的统一协调,对图集质量有很大影响。本文是作者在编制北京市农业区划地图集的实践基础上,根据地图信息传输论的观点,对农业区划地图集的统一协调的内容及方法进行了探讨。试图总结编制这类图集的统一协调模式,以供读者编图时参考。  相似文献   

12.
研究了国家法的抽象正义观与民间法的情理正义观,认为西方国家法的抽象正义观与东方民间法的情理正义观存在实质的不同,原因在于思维方式、超验与经验传统、政治结构的差别。在现代法治理念下,传统民间法所代表的正义观将向混合正义观转型,西方法治所代表的国家法抽象正义观是其骨架。  相似文献   

13.
许多科学家包括诺贝尔奖获得者李政道教授都预言,真空是未来物理学的一个重要研究对象.十七世纪的伽利略时代人们曾讨论过"真空"是否存在的问题.当时的学术界分成两派,一派以帕斯卡为代表,认为真空存在,另一派以笛卡尔为代表,认为真空不存在,最后实验证明"真空存在派"正确.现代研究表明,真空并非一无所有,这样就产生了一个新的问题"排除了真空物质后的空间",即"真空的真空"是否存在.本文探讨了与"真真空"有关的问题,提出了一些观测实验方法,这些方法可以帮助我们最终解答"真真空"的存在性问题.  相似文献   

14.
给出了一维非自治时滞系统点态退化的一个例子,拓宽了该领域的研究。  相似文献   

15.
老年人生活空间移动性影响要素研究进展   总被引:1,自引:0,他引:1  
 老年人生活空间移动性是老年人在日常生活中能动生活状态的重要表征。在梳理老年人生活空间移动性相关概念、测度方法基础上,分析了物质环境要素和非物质环境要素对老年人生活空间移动性的影响;提炼出有效支持老年人生活空间移动性的中观环境规划、微观环境设计和政策文化扶助层面的策略;指出了老年人生活空间移动性的研究建议和发展方向。  相似文献   

16.
在人与自然界的关系的演进过程中,形成了与不同文明时期相适应的人-自观念。从"天人合一"到"人定胜天"再到"和谐共生",这是人-自观念演进的肯定、否定、否定之否定的辩证发展过程,也是一个合乎规律的过程,它们都是时代的产物,都包含着不同程度的合理的因素,我们必须对它们进行具体的辩证的分析。  相似文献   

17.
对于行政许可违法的法律责任问题,人们往往是从行政许可实施违法的角度进行研究,而对于设定违法及其责任追究的探讨却相对薄弱。然而。行政许可设定一旦违法,其对相对人和社会公共利益的损害将会更大,因此,对许可设定的违法及其责任问题进行研究,以避免违法行政行为的发生,促进政府依法行政,不仅必要而且是非常有意义的。  相似文献   

18.
曲面“侧”是一个重要而难以理解的概念,本文对曲面“侧”概念的讲授方法进行了探讨,给出了曲面“侧”概念的“参照物”理解法,通过实践证明,效果良好。  相似文献   

19.
20.
利用对位异构体的对称性由核磁共振氢谱测定了工业十二烷基苯在硝硫混酸中的硝化选择性,发现一硝化产物中对位异构体的比例为75% ̄80%。以月桂酸和苯为原料,经氯化、酰化和还原合成了正十二烷基苯。在同样条件下研究了正十二烷基苯的硝化,由核磁共振氢谱和气相色谱分析,发现一硝化产物中对位异构体的比例仅为60%。根据空间位阻效应,对结果进行了讨论,并与甲苯,乙苯,异丙苯等短链烷基苯的硝化结果进行了比较。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号