首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
在传统共栅放大器结构基础上,基于0.18μm CMOS工艺,提出一种带多重反馈环路技术的0.8~5.2GHz宽带低噪声放大器(LNA).该电路采用的负反馈结构在改善噪声系数和输入阻抗匹配的同时并不需要消耗额外的功耗;采用的双重正反馈结构增加了输入级MOS管跨导设计的灵活性,并可通过输出负载阻抗反过来控制输入阻抗匹配,使得提出的LNA在宽频率范围内实现功率增益、输入阻抗与噪声系数的同时优化.后版图仿真结果显示,在0.8~5.2GHz频段内,该宽带LNA的功率增益范围为12.0~14.5dB,输入反射系数S_(11)为-8.0~-17.6dB,输出反射系数S_(22)为-10.0~-32.4dB,反向传输系数S12小于-45.6dB,噪声系数NF为3.7~4.1dB.在3GHz时的输入三阶交调点IIP3为-4.0dBm.芯片在1.5V电源电压下,消耗的功率仅为9.0mW,芯片总面积为0.7mm×0.8mm.  相似文献   

2.
基于UMC 0.18 μm CMOS 工艺,设计了一款用于全球卫星导航系统(GNSS)的宽带低噪声放大器(LNA). 其中,采用并联反馈电阻噪声抵消结构降低整体电路的噪声,使用电感峰化技术提升工作频带内的增益平坦度,进而优化高频噪声性能. 此外,采用共源共栅结构提高电路的反向隔离度. 仿真结果表明,在电源电压为1.8 V 的条件下,低噪声放大器的-3 dB 带宽为1 GHz,最大增益为15.08 dB,在1-2 GHz 内增益变化范围为±1 dB,噪声系数为2.65-2.82 dB,输入回波损耗和反向传输系数分别小于-13 dB 和-40 dB. 芯片核心面积为740 μm×445 μm.  相似文献   

3.
在传统共栅放大器结构基础上,基于0.18 μm CMOS工艺,提出一种带多重反馈环路技术的0.8~5.2 GHz宽带低噪声放大器(LNA). 该电路采用的负反馈结构在改善噪声系数和输入阻抗匹配的同时并不需要消耗额外的功耗;采用的双重正反馈结构增加了输入级MOS管跨导设计的灵活性,并可通过输出负载阻抗反过来控制输入阻抗匹配,使得提出的LNA在宽频率范围内实现功率增益、输入阻抗与噪声系数的同时优化. 后版图仿真结果显示,在0.8~5.2 GHz频段内,该宽带LNA的功率增益范围为12.0~14.5 dB,输入反射系数S11为-8.0~-17.6 dB,输出反射系数S22为-10.0~-32.4 dB,反向传输系数S12小于-45.6 dB,噪声系数NF为3.7~4.1 dB. 在3 GHz时的输入三阶交调点IIP3为-4.0 dBm. 芯片在1.5 V电源电压下,消耗的功率仅为9.0 mW,芯片总面积为0.7 mm×0.8 mm.  相似文献   

4.
提出了一种可用于0.1-1.2 GHz射频接收机前端的宽带巴伦低噪声放大器(Balun-LNA).采用噪声抵消技术,输入匹配网络的沟道热噪声和闪烁噪声在输出端被抵消,在宽带内可同时实现良好的输入匹配和低噪声性能.通过分别在输入匹配级内增加共源放大器,在噪声抵消级内增加共源共栅放大器实现单端转差分功能.电路采用电流复用技术降低系统功耗.设计基于TSMC 0.18 μm CMOS工艺,LNA的最大增益达到13.5dB,噪声系数为3.2-4.1 dB,输入回波损耗低于-15 dB.在700 MHz处输入1 dB压缩点为-8 dBm,在1.8 V供电电压下电路的直流功耗为24 mW,芯片面积为0.062 5 mm 2 .  相似文献   

5.
设计了一款超宽带低噪声放大器(UWB LNA).采用Cascode-共基极电流复用结构,直流通路时能有效降低功耗,交流通路时增加了电路的增益,并且保持了Cascode结构高反向隔离性的优点.采用有源电感替代输出级的螺旋电感,减小了芯片面积,并且通过改变有源电感等效电感值的大小,实现UWB LNA增益的调节功能.基于Jazz 0.35μm SiGe BiCMOS工艺,利用射频/微波集成电路仿真工具ADS对该UWB LNA进行了验证.结果表明:在3.1~10.6GHz频段内,增益大于14.1dB,噪声系数小于4.0dB,输入与输出反射系数均小于-10dB,频率为7GHz时输入三阶交调点为-11dBm,功耗为19.75mW.  相似文献   

6.
本文采用TSMC 0.18μm CMOS工艺,设计了两款可工作在2.4GHz频率上的窄带低噪声放大器(LNA)。两款LNA的电路结构分别为Cascode电路结构应用电流复用技术,以及应用正体偏置效应的折叠Cascode结构。所设计的两款窄带LNA的仿真结果表明,在2.4 GHz工作频率上,Cascode结构LNA在1.5V供电电压下电路功耗为4.9mW,增益为23.5dB,输入输出反射系数分别为-16.9dB与-16.3dB,噪声系数为0.72dB且IIP3为3.12dBm;折叠Cascode结构LNA可在0.5V供电电压下工作,功耗为1.83mW,增益为23.8dB,输入输出反射系数分别为-28.2dB与-24.8dB,噪声系数为0.62dB且IIP3为-7.65dBm,适用于低电压低功耗应用。  相似文献   

7.
采用SMIC0.18μm RF-CMOS工艺,设计了一种符合IEEE802.15.4标准,应用于ZigBee射频接收机前端的2.4 GHz低噪声放大器(LNA),详述了该优化电路结构的设计原理,并给出了仿真结果.仿真结果表明,该LNA在5 mW的较低功耗下,可实现较低的噪声系数(NF=2.9 dB),较大的增益(11.3 dB)和良好的非线性度(IIP3=1.75 dBm),完全满足ZigBee应用的要求.  相似文献   

8.
为在超宽带(Ultra-wideband,UWB)通信中抑制工作频带内的窄带干扰,提高接收机性能,提出了一个用于超宽带接收机的具有带阻特性的低噪声放大器(low noiseamplifier,LNA)。该放大器利用源简并电感得到实数的输入阻抗,利用输入匹配网络扩展工作带宽,利用具有带阻特性的负载网络得到宽带内的带阻特性。通过建立源简并结构超宽带LNA的电路模型,分析了超宽带LNA的放大器晶体管尺寸与功耗、增益、噪声系数之间的关系,提出了放大器晶体管尺寸的设计方法,同时给出了输入匹配网络和负载网络的电路结构和设计方法。基于SMIC 0.18μm CMOS工艺的仿真表明,通过该方法设计的LNA,其通带和阻带性都能符合设计指标要求。  相似文献   

9.
为在超宽带(Ultra-wideband,UWB)通信中抑制工作频带内的窄带干扰,提高接收机性能,提出了一个用于超宽带接收机的具有带阻特性的低噪声放大器(low noise amplifier,LNA)。该放大器利用源简并电感得到实数的输入阻抗,利用输入匹配网络扩展工作带宽,利用具有带阻特性的负载网络得到宽带内的带阻特性。通过建立源简并结构超宽带LNA的电路模型,分析了超宽带LNA的放大器晶体管尺寸与功耗、增益、噪声系数之间的关系,提出了放大器晶体管尺寸的设计方法,同时给出了输入匹配网络和负载网络的电路结构和设计方法。基于SMIC 0.18μm CMOS工艺的仿真表明,通过该方法设计的LNA,其通带和阻带性都能符合设计指标要求。  相似文献   

10.
基于WIN InGaP/GaAsHBT工艺,设计了一款应用于LTE移动终端的射频功率放大器。工作在AB类偏置状态,由三级放大电路级联构成,并带有温度补偿和线性化的偏置电路。芯片版图面积为1410×785μm2,电源电压为3.4V。仿真结果显示:功率增益大于30.1dB、1dB压缩点输出功率为31.2dB.m,在Band38(2570~2620)MHz内,输入回波损耗S11小于-15dB,S21大于30.1dB,输出回波损耗S22低于-25dB,1dB压缩点输出功率的功率附加效率高达36.6%。  相似文献   

11.
采用两级锗硅异质结晶体管(SiGe HBT)低噪声放大芯片,通过ADS2015进行宽带电路匹配设计了一款频率覆盖超短波到L波段的宽带低噪声放大器(LNA).仿真显示该LNA工作频率在0.07~2 GHz,增益Gain>30 dB,噪声系数NF<0.78,增益平坦度Gain Flatness<0.2 dB,输入输出回波损耗Return Loss<-10 dB.实测结果显示常温下该LNA测试指标和仿真结果基本一致,233 K低温下该LNA的Gain实测值比常温下测试结果增大1 dB左右,其它指标基本一致,证实了采用SiGe HBT放大芯片设计的低噪声放大器噪声性能良好且具有低温敏特性.  相似文献   

12.
设计了一种400~800 MHz带有源巴伦的低噪声放大器(balun-LNA).电路输入级采用共栅结构实现宽带匹配,输出端使用共源漏技术来实现巴伦功能,将单端输入信号转变为差分输出信号,利用参数优化设计来降低噪声性能.电路采用TSMC 0.18 μm RF CMOS工艺仿真,结果表明:在400~800 MHz工作频段内,balun-LNA的输入反射系数小于-12 dB,噪声系数为3.5~4.1 dB,电压增益为18.7~20.5 dB,在3.3V电压下功耗约为17.8 mW.  相似文献   

13.
利用Advanced Design System(ADS)完成了L波段低噪声放大器(LNA)的设计.分析了实际电路可能产生的非连续性、寄生参数效应等因素对电路各个性能指标的影响,并针对这些因素利用ADS进行了电磁仿真计算,最后给出了放大器的仿真结果和最终电路及测试结果.采用ATF-35143器件设计,达到了预定的技术指标,工作频率1.21GHz,增益G大于14dB,噪声系数NF小于0.5 dB,输入1dB压缩点大干5dbm.  相似文献   

14.
针对目前在LNA设计中存在需要在任意给定的功耗条件下噪声和输入阻抗同步匹配的问题,本文采用TSMC0.18μm RF工艺,通过利用共源共栅结构和功耗受限下噪声和阻抗同步匹配技术(PCSNIM),提出了一个可支持IEEE802.11a无线局域网(WLAN)标准的5.8GHz CMOS低噪声放大器,在中心频率处所提出的低噪放大器的噪声系数(NF)只有0.972dB。仿真结果表明:在1.8V供电电压下LNA的功耗为6.4mW,增益可达17.04dB,输入1dB压缩点(P1dB)约为-21.22dBm,同时具有良好的输入输出匹配特性。  相似文献   

15.
设计了一种应用于光发射功率自适控制系统中的低噪声宽带跨阻放大器,用0.6μm CMOS工艺实现,在156MHz-3dB带宽范围内最小均方根等效输入噪声电流为130pA/√Hz,在无光状态时电路的总电流为3.3mA,功耗低于国外同类产品。  相似文献   

16.
基于FPGA设计实现了一种全频段多系统全球导航卫星系统(global navigation sattellite system,GNSS)数据采集系统。该系统由宽带天线、宽带射频前端、A/D转换模块、下变频模块、滤波器模块、数据存储模块等构成,可以实现四大导航系统的全频段覆盖,具有并行数据采集通道多、采样速率高、可灵活配置等特点,能够满足全频段多系统软件接收机的各种处理需求。对GALILEO在轨卫星实际数据的测试结果验证了数据采集系统的正确性。该数据采集系统可用于GNSS全频模拟信号源的验证以及在轨导航卫星信号的质量监测。  相似文献   

17.
为满足高性能射频前端接收部分对高线性度的需求,基于SiGe BiCMOS工艺设计并实现了一款工作在2.4 GHz频段的高线性度低噪声放大器(Low Noise Amplifier,LNA).该放大器采用Cascode结构在增益与噪声之间取得平衡,在Cascode结构输入和输出间并联反馈电容,实现输入端噪声与增益的同时匹配.设计了一种改进的动态偏置有源电流镜以提升输入 1 dB压缩点及输入三阶交调点的线性度指标.为满足应用需求,LNA与射频开关及电源模块集成组成低噪声射频前端接收芯片进行流片加工测试.测试结果表明:在工作频率2.4 ~2.5 GHz内,整个接收芯片增益为14.6 ~15.2 dB,S11、S22<-9.8 dB,NF<2.1 dB,2.45 GHz输入1 dB压缩点为-2.7 dBm,输入三阶交调点为+12 dBm.芯片面积为1.23 mm×0.91 mm.该测试结果与仿真结果表现出较好的一致性,所设计的LNA展现出了较好的线性度表现.  相似文献   

18.
为了改善现有宽带低噪声放大器(LNA)拓扑结构电路的性能,文中提出了一个交叉耦合和负反馈技术相结合的宽带低噪声放大器架构.该LNA基于复合NMOS/PMOS交叉耦合的无电感宽带差分并联反馈共源低噪声放大器(SFCS-LNA),进一步在输出端和输入端增加交叉连接的PMOS管,引入新的负反馈结构,通过对所引入PMOS管的跨导进行调节,增加了LNA输入匹配的自由度,以解决原复合NMOS/PMOS交叉耦合SFCS-LNA的反馈电阻受限于输入匹配的问题,从而在保证输入匹配的同时提高反馈电阻的阻值,改善LNA中的噪声、输入匹配和增益之间相互制约的矛盾.结果表明,该LNA架构能有效降低LNA的噪声系数和提高LNA的电压增益.  相似文献   

19.
在对一种微带线电磁带隙(EBG)结构的集总等效电路模型及其传输特性进行研究的基础上,采用奇偶模分析方法将EBG结构分解成两个可以独立设计的简单电路,推导了采用EBG结构实现具有谐波抑制功能的Wilkinson功分器闭环设计公式,因此该文的设计方法简便有效.最后设计并研制了一个工作频率为2.4 GHz的功分器.该功分器在通带内的最大插损小于0.25 dB,回波损耗和隔离度均优于20 dB,3次谐波的抑制衰减大于25 dB,可应用于功率合成器、混频器等微波电路中.  相似文献   

20.
设计实现了一种增益连续型的dB线性中频可变增益放大器.该放大器由2级优化了线性度的可变增益单元级联而成,通过宽范围的指数增益产生电路的设计,实现放大器的增益与控制电压成dB线性;同时,还设计了1种连续时间型Gm-C反馈结构的消直流失调电路,可实时抑制放大器的输出直流失调电压.电路采用0.18μm CMOS工艺进行流片,测试结果表明,在3.3V电压下,连续增益动态范围为-10~46dB,-3dB带宽大于20 MHz,直流失调的抑制增益小于-5dB,核心电路面积仅为0.11mm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号