首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文运用初等数论简单同余法、分解因子法及反证法等,得到丢番图方程2py2=2x3+3x2+x,(p为素数)无正整数解的情况.(1)当p≡1(mod 8),p≡5(mod 8),p≡7(mod 8)时,则方程无正整数解;(2)当p≡3(mod 8)时,Un+Vnp(1/2)=(x0+y0p(1/2))n.其中x0,y0是Pell方程x2-py2=1的基本解,当n≡0(mod 2)时,则方程无整数解;当n≡1(mod 2)时,若2|x0,则方程无整数解.特别是p≡3(mod 8)且p100时,2|x0,则方程无整数解.  相似文献   

2.
关于不定方程4x~2-py~2=1   总被引:2,自引:0,他引:2  
研究了二次不定方程4x2-py2=1(p为奇素数),对于特例p=m2±2(m为正奇数),利用Pell方程x2-py2=1的正整数解公式得到了原方程的所有正整数解.另外还证明了p=1,5(mod8)时方程4x2-py2=1无正整数解.  相似文献   

3.
椭圆Diophantine方程(x+p)(x2+p2)=y2的本原解   总被引:1,自引:0,他引:1  
设p是素数.在此给出了方程(x+p)(x2+p2)=y2有适合gcd(x,y)=1且y为奇数的正整数解(x,y)的充要条件.  相似文献   

4.
设 x为给定的正实数 ,D是给定的正整数且无平方因子 ,用 G( D,x)表示丢番图方程 a2 Db2 =c2满足条件 a >0 ,b>0 ,c>0 ,( a,b) =1且 c≤ x的所有整数解 ( a,b,c)的组数 .在此考虑 D =p和 D =2 p(其中 p为奇素数 )的情形 ,得到了下面两个渐近估计式 G( p,x) =2 p( p 1 )πx O x12 logx 和 G( 2 p,x) =2 p( p 1 )πx O x12 logx .  相似文献   

5.
方程xp±y2p=z2与广义费尔马猜想   总被引:18,自引:4,他引:14  
设p为奇素数,证明了丢番图方程x4 -y4 =zp 与x2p±y2p=z2 均无正整数解;方程xp y2p=z2 仅有整数解 16 2 3 =32 ;方程x2p 2 kyp =z2 (k≥ 1)仅有整数解 12p 2 3 · 1p =32 ;同时还获得了方程x2 ±y4 =zp与x2 ±y4 =±z2p 的深刻结果,从而很大程度地支持广义Fermat猜想.  相似文献   

6.
设p>3为素数,证明了丢番图方程x6-y6=2pz2无正整数解,证明了丢番图方程x6+y6=2pz2在p≠1(mod 24)时无正整数解,同时获得了方程在p≡1(mod 24)时有正整数解的计算公式.  相似文献   

7.
设p是奇素数,t∈{3,4,8}.运用初等方法讨论了方程x2 p2=yn适合n>2的正整数解(x,y,n)的个数,证明了该方程至多有1组正整数解(x,y,n)适合n=t.  相似文献   

8.
关于Diophantine方程x3±1=Dy2至今仍未解决.论文利用同余式、平方剩余、Pell方程解的性质、递归序列证明:(1)p≡1(mod 12)为素数,q=12s2+1(s是正奇数)为素数,(p q)=-1时,Diophantine方程x3±1=pqy2仅有整数解(x,y)=(1,0);(2)p≡1(mod 24)为素数,q=12s2+1(s是正奇数)为素数,(p q)=-1时,Diophantine方程x3±1=pqy2仅有整数解(x,y)=(-1,0).  相似文献   

9.
设p为奇素数.证明了:①若整数n>2,则丢番图方程x(x+1)(x+2)=2pyn仅有正整数解(p,x,y)=(3,1,1);②若整数n=2,则丢番图方程x(x+1)(x+2)=2pyn在p■1(mod 8)时仅有正整数解(p,x,y)=(3,1,1),(3,2,2),(3,48,140),(11,98,210);在p≡1(mod 8)时的正整数解为(p,xn,yn)=(p,16t2n,4untnsn),这里p,un,tn,sn满足sn+2=6sn+1-sn,s1=3,s2=17,tn+2=6tn+1-tn,t1=1,t2=6及pu2n=16t2n+1.  相似文献   

10.
方程x~2 y~2=2z~2 (1)的正整解为 i 当其正整解相等时,有x=y=z=t,其中t∈N={1,2,3,…}; ii 当其正整数解互不相等且同为奇数时,有x=m~2 2mn-n~2,y=|-m~2 2mn N~2|,z=m~2 n~2,其中m,n∈N,m>n,(m,n)=1,m、n为一奇一偶。证明 i 显然。今证ii。由方程 (1) 知,它的正整数解x,y,z同为奇数或同为偶数,否则方程 (1) 是不成立的。特x,y为奇数,z为偶数,令x=2p 1,y=2q 1,z=2u,其中p,q,u∈N。将x,y之值代入 (1) 并将其两边同除以2,则其左边等于2(p~2 q~2 p q) 1为奇数,而右边等于4u~2为偶数,引出矛盾,方程 (1) 不成立。故方程 (1) 不存在x,y为奇数而z为偶数的解。同理可证方程 (1) 不存在x,y为偶数而z为奇数,或x,y一奇一偶而z为奇数,或x,y一奇一偶而z为偶数的正整数解。所以方程 (1) 的互不相等的正整数解x,y,z同为奇数或同为偶数。而要求方程 (1) 的同为偶数的解x,y,z,这可将方程 (1) 的同为奇数的解x,y,z  相似文献   

11.
设p是奇素数.运用四次Diophantine方程的性质讨论了椭圆曲线E:y2=2px(x2-1)的正整数点(x,y)的个数.证明了:当p=3时,E仅有3组正整数点(x,y)=(2,6),(3,12)和(49,840);当p=7时,E仅有1组正整数点(x,y)=(8,84);当p≡1(mod 8)或p≡3(mod 8)且p>3时,E至多有1组正整数点(x,y);除了上述情况以外,E没有正整数点.  相似文献   

12.
设p,q,r为奇素数,p≡13 mod 24,q≡19 mod 24,(p/q)=-1.利用同余式、平方剩余、递归序列、Legendre符号的性质、Pell方程解的性质等证明了:(A)若r≡5 mod 12,则方程G:x3-1=2pqry2仅有平凡解(x,y)=(1,0);若r≡11 mod 12,则方程G最多有2组正整数解.(B)若r≡11 mod 12,则方程H:x3+1=2pqry2仅有平凡解(x,y)=(-1,0);若r≡5 mod 12且(pq/r)=-1,则方程H最多有2组正整数解.  相似文献   

13.
设是p为奇素数,该文证明了当p≡1(mod 6)时,对于给定的素数p,丢番图方程x2-xy+y2=p有且仅有2组适合x《y的正整数解.  相似文献   

14.
关于丢番图方程x6±y6=pDz2   总被引:1,自引:0,他引:1  
设p>3是素数,证明了丢番图方程x6±y6=6pz2,x6+y6=3pz2和x6-y6=2pz2均无正整数解;方程x6+y6=pz2和x6+y6=2pz2在p1(mod24)时均无正整数解;方程x6-y6=pz2在p1,7,19(mod24)时无正整数解;方程x6-y6=3pz2在p(≡/)1,19(mod24)时无正整数解;并且获得了以上方程在p≡1,7,19(mod24)时的全部正整数解通解公式, 从而从正面支持了广义Fermat猜想和Tijdeman猜想.  相似文献   

15.
对于丢番图方程x(?)-2Dy~2=1,(1)当D=p 是奇素数时,柯召、孙琦得到了一个完满的结果,即定理1.设D=p 是一个奇素数,则方程(1)除p=3,x=7,y=20外无其它正整数解.本文内容之一,在于给出定理1的一个初等而简短的证明.后来,柯召、孙琦又证明了:设D=pq,p,q 为不同的奇素数,p≡q≡1(mod4),((p/q))  相似文献   

16.
方程p2x-pxDy+D2y=z2的非负整数解   总被引:1,自引:1,他引:0  
设D是大于1的奇数,p是不能整除D的素数.文章给出了方程p2x-pxDy D2y=z2有适合y>1的非负整数解(x,y,z)的充要条件.  相似文献   

17.
关于丢番图方程x3±1=py2   总被引:2,自引:0,他引:2  
应用因子分解法、简单同余法以及前人的已知结果证明了:(1)设p是1个奇素数,则丢番图方程组x+1=3py21,x2-x+1=3y22,(y1,y2)=1,y1>0,y2>0,无正整数解x,p,y1,y2;(2)丢番图方程x3+1=py2(其中p≡-1(mod 3)为素数)仅有整数解(x,y)=(-1,0);(3)丢番图方程x3-1=py2(其中p≡-1(m od 3)为素数)仅有整数解(x,y)=(1,0).  相似文献   

18.
设p是奇素数,m是正整数.D是无平方因子正整数.本文证明了当p>3,m>1,D不能被p或2kp+1之形素数整除时,方程xp-2mp=pDy2没有适合gcd(x,y)=1的正整数解(x,y).  相似文献   

19.
对于正整数n,设Q(n)是n的无平方因子部分;设p是适合p≡1(mod 6)的奇素数.运用Petr组的性质证明了:如果方程x3+1=3py2有正整数解(x,y),则p≠Q(3s2-2),p≠Q(12s2+1),且3p≠Q(s2+2),其中s是正整数.  相似文献   

20.
潘家宇 《河南科学》2011,29(12):1416-1420
讨论了丢番图方程3n+px2=yp(x,y,n∈N;p是奇素数)的可解性,得到以下结果:(1)当p=3时,方程的所有解为(x,y,n)=(46·33t+1,13·32t+1,6t+7),(10·33t+1,7·32t+1,6t+8).(2)当p=1(mod 24)时,方程没有解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号