首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
设D是大于 2且不含σk +1之形素因数的无平方因子正整数 ,p是适合p D的素数。本文证明了 :当p>3且p ± 1(mod 12 )时 ,如果D有素因数q适合q≡ 1(mod 4) ,则方程x3 +p3n =Dy2 没有适合gcd(x ,y) =1的正整数解 (x,y ,n)。  相似文献   

2.
主要利用递归数列、同余式、平方剩余以及Pell方程解的性质证明了当p≡1(mod 12),q≡12s2+1时,丢番图方程x3-33=3pqy2仅有整数解(x,y)=(3,0);当p≡1(mod 24),q≡12s2+1时,丢番图方程x3+33=3pqy2仅有整数解(x,y)=(-3,0).  相似文献   

3.
利用初等方法得出了:p=3(3k+1)(3k+2)+1(k≡1,2(mod4))为奇素数时,丢番图方程x3+27=py2无正整数解;p=3k(k+1)+1≡1(mod8)(n≡k(mod 13))为奇素数时,丢番图方程x3-27=py2无正整数解.  相似文献   

4.
设p为奇素数.证明了:①若整数n>2,则丢番图方程x(x+1)(x+2)=2pyn仅有正整数解(p,x,y)=(3,1,1);②若整数n=2,则丢番图方程x(x+1)(x+2)=2pyn在p■1(mod 8)时仅有正整数解(p,x,y)=(3,1,1),(3,2,2),(3,48,140),(11,98,210);在p≡1(mod 8)时的正整数解为(p,xn,yn)=(p,16t2n,4untnsn),这里p,un,tn,sn满足sn+2=6sn+1-sn,s1=3,s2=17,tn+2=6tn+1-tn,t1=1,t2=6及pu2n=16t2n+1.  相似文献   

5.
对于正整数n,设Q(n)是n的无平方因子部分;设p是适合p≡1(mod 6)的奇素数.运用Petr组的性质证明了:如果方程x3+1=3py2有正整数解(x,y),则p≠Q(3s2-2),p≠Q(12s2+1),且3p≠Q(s2+2),其中s是正整数.  相似文献   

6.
利用Pell方程及同余的性质给出了Diophantine方程G:kx4-(2k+4)x2y2+ky4=-4仅有整数解(|x|,|y|)=(1,1)的充分条件。证明了:1)若k≠12(mod 16),则Diophantine方程G仅有整数解(|x|,|y|)=(1,1);2)若k=4m,m≡3(mod4),且2︱s或s≡0(mod 4),t≡3,5(mod 8)或s≡2(mod 4),t≡1,7(mod 8),则Diophantine方程G仅有整数解(|x|,|y|)=(1,1),这里s+t m1/2是Pell方程x2-my2=1的基本解。  相似文献   

7.
设p为奇素数.利用同余性质及Fermat的无穷递降法,证明了:D=p3,p≡3,7(mod 16);或D=-p3,p≡9,13(mod 16);或D=2p3,p≡3,5(mod 8);或D=4p3,p≡3,7(mod 16)时,方程x4+Dy4=z2,gcd(x,y)=1均无正整数解.同时给出D=3时方程的全部正整数解.  相似文献   

8.
关于Diophantine方程x~3±1=Dy~2   总被引:1,自引:1,他引:0  
利用数论中的同余,勒让德符号的性质及其它一些方法,研究丢番图方程x3±1=Dy2(D=D1p,D是无平方因子的正整数,其中D1是不能被3或6k+1之形的素数整除的正整数,p=3(12r+7)(12r+8)+1,r是正整数)的解的情况。证明了当D1≡7(mod12)时,方程x3+1=Dy2无正整数解;当D1≡5,8(mod12)时,方程x3-1=Dy2无正整数解。  相似文献   

9.
设p是6k+1型的奇素数,运用Pell方程px2-3y2=1的最小解、同余式、平方剩余、勒让德符号的性质等初等方法证明了当p=3n(n+1)+1≡1,7(mod8)(n为单数)为奇素数,且2n+1为奇素数时,指数Diophantine方程x3-1=2py2无正整数解.  相似文献   

10.
设p,q,r为奇素数,p≡13 mod 24,q≡19 mod 24,(p/q)=-1.利用同余式、平方剩余、递归序列、Legendre符号的性质、Pell方程解的性质等证明了:(A)若r≡5 mod 12,则方程G:x3-1=2pqry2仅有平凡解(x,y)=(1,0);若r≡11 mod 12,则方程G最多有2组正整数解.(B)若r≡11 mod 12,则方程H:x3+1=2pqry2仅有平凡解(x,y)=(-1,0);若r≡5 mod 12且(pq/r)=-1,则方程H最多有2组正整数解.  相似文献   

11.
目的研究丢番图方程x3+1=3py2的正整数解问题。方法运用Pell方程的基本性质。结果设p是适合p≡1(mod 6)的奇素数,如果p=3k2-2或者3p=k2+2,其中k是正整数,则方程x3+1=3py2无正整数解。结论部分解决了该方程的可解性问题。即对某些P,该方程无正整数解。  相似文献   

12.
利用分解法和无穷递降法研究了一类丢番图方程的解,结果证明了丢番图方程x4+dy4=z2,gcd(x,y)=1,这里d为整数且d≠0,在d=3n及n≡3(mod4)时,无正整数解。  相似文献   

13.
设D是无平方因子的正整数,D=∏s i=1pi(s≥2),pi≡1(mod 6)(1≤i≤s)为奇素数。关于Diophantine方程x3+1=Dy2的初等解法至今仍未解决。主要利用同余式、平方剩余、Pell方程的解的性质、递归序列,证明了q≡7(mod 12)为奇素数,且(q/13)=-1时,Diophantine方程x3+1=13qy2当q=7时有整数解(4 367,±30 252),(-1,0);当q≠7时仅有整数解(x,y)=(-1,0)。  相似文献   

14.
关于丢番图方程x3±1=py2   总被引:2,自引:0,他引:2  
应用因子分解法、简单同余法以及前人的已知结果证明了:(1)设p是1个奇素数,则丢番图方程组x+1=3py21,x2-x+1=3y22,(y1,y2)=1,y1>0,y2>0,无正整数解x,p,y1,y2;(2)丢番图方程x3+1=py2(其中p≡-1(mod 3)为素数)仅有整数解(x,y)=(-1,0);(3)丢番图方程x3-1=py2(其中p≡-1(m od 3)为素数)仅有整数解(x,y)=(1,0).  相似文献   

15.
设D1是无平方因子的正整数,p≡1(mod 6)为素数,运用Pell方程px2-3y2=1的最小解、同余式、平方剩余、勒让德符号的性质等初等方法,证明了:当D1是不能被3或6k+1型的素数整除的正整数、p=3n(n+1)+1时,丢番图方程x3±1=pD1y2无正整数解.  相似文献   

16.
利用初等数论的方法证明了:如果D是适合D≡5(mod8)的奇素数,则方程x3+8=3Dy2无正整数解;如果D是适合D≡7(mod8)的奇素数,则方程x3-8=3Dy2无正整数解。  相似文献   

17.
利用Pell方程及同余的性质给出了Diophantine方程 G:kx4-(2k+4)x2y2+ky4=-4仅有整数解(|x|,|y|)=(1,1)的充分条件。证明了:1)若k 12(mod16),则Diophantine方程G 仅有整数解(|x|,|y|)=(1,1);2)若k=4m,m≡3(mod4),且2s或s≡0(mod4),t≡3,5(mod8)或s≡2(mod4),t≡1,7(mod8),则Diophantine方程G 仅有整数解(|x|,|y|)=(1,1),这里s+t m 是Pell方程x2-my2=1的基本解。
  相似文献   

18.
关于Diophantine方程x3±1=Dy2至今仍未解决.论文利用同余式、平方剩余、Pell方程解的性质、递归序列证明:(1)p≡1(mod 12)为素数,q=12s2+1(s是正奇数)为素数,(p q)=-1时,Diophantine方程x3±1=pqy2仅有整数解(x,y)=(1,0);(2)p≡1(mod 24)为素数,q=12s2+1(s是正奇数)为素数,(p q)=-1时,Diophantine方程x3±1=pqy2仅有整数解(x,y)=(-1,0).  相似文献   

19.
3.方程(1)在p≡17(mod24),q≡3(mod8)或p≡5(mod24),q≡23(mod24)或p≡5(mod24),q≡3(mod8),(p/q)=1时均无正整数解.4.当D=2p时,方程(1)除开有解p=3,x=7,y=20外,无其他的正整数解.5.方程(1)在p≡3(mod4),q≡3(mod4)时无正整数解.国外,Nagell,Ljunggren,Cohn等人有过不少工作,可参看文[4]所附文献.本文用不同于前面诸文的方法,对于D=pq的情形,得到进一步的结果.我们有  相似文献   

20.
方程(1)x~n+x~(n-1)+…+x+1=y~k.Greone证明了方程(1)在n=3,k=2时,除开x=7,y=±20外,无其他|x|>1的整数解。E.Landau证明了n≡2(mod3),(n+1)/3的所有奇素因子皆6h-1型时,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号