首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用标准0.35 μm SiGe HBT工艺设计了工作频段在3.1~10.6 GHz的超宽带低噪声放大器.从宽带电路和高频电路设计的器件选择、电路结构选择等方面讨论了超宽带低噪声放大器的设计.结果表明,通过合适的电路结构和器件参数选择,可以采用0.35μm SiGe HBT工艺制备满足超宽带系统要求的低噪声放大器.在整个工作频段内所设计的低噪声放大器输入输出匹配S11和S22均优于-8dB,噪声系数为3.5dB,电路的工作电压为2.5 V,电流消耗为4.38 mA.  相似文献   

2.
一种超宽带掺铒光纤放大器的实验研究   总被引:3,自引:0,他引:3  
分别优化C和L两个波段掺铒光纤放大器,利用并联方式实现了C L-波段超宽带光纤放大器.研制出了一台结构简单、高增益低噪声、增益平坦的超宽带掺铒光纤放大器,实现了从1 524 nm-1 602 nm超过 70 nm带宽内平均增益,其中C-波段在1 524nm-1 564 nm之间平均增益超过30 dB,L-波段从1 572 nm到 1 602 nm增益起伏小于2 dB.  相似文献   

3.
为在超宽带(Ultra-wideband,UWB)通信中抑制工作频带内的窄带干扰,提高接收机性能,提出了一个用于超宽带接收机的具有带阻特性的低噪声放大器(low noiseamplifier,LNA)。该放大器利用源简并电感得到实数的输入阻抗,利用输入匹配网络扩展工作带宽,利用具有带阻特性的负载网络得到宽带内的带阻特性。通过建立源简并结构超宽带LNA的电路模型,分析了超宽带LNA的放大器晶体管尺寸与功耗、增益、噪声系数之间的关系,提出了放大器晶体管尺寸的设计方法,同时给出了输入匹配网络和负载网络的电路结构和设计方法。基于SMIC 0.18μm CMOS工艺的仿真表明,通过该方法设计的LNA,其通带和阻带性都能符合设计指标要求。  相似文献   

4.
为在超宽带(Ultra-wideband,UWB)通信中抑制工作频带内的窄带干扰,提高接收机性能,提出了一个用于超宽带接收机的具有带阻特性的低噪声放大器(low noise amplifier,LNA)。该放大器利用源简并电感得到实数的输入阻抗,利用输入匹配网络扩展工作带宽,利用具有带阻特性的负载网络得到宽带内的带阻特性。通过建立源简并结构超宽带LNA的电路模型,分析了超宽带LNA的放大器晶体管尺寸与功耗、增益、噪声系数之间的关系,提出了放大器晶体管尺寸的设计方法,同时给出了输入匹配网络和负载网络的电路结构和设计方法。基于SMIC 0.18μm CMOS工艺的仿真表明,通过该方法设计的LNA,其通带和阻带性都能符合设计指标要求。  相似文献   

5.
提出了一种采用0.18μm CMOS工艺的3.1~10.6GHz超宽带低噪声放大器.电路的设计采用了电流复用技术与阻抗反馈结构,具有低功耗和平坦增益的特性.仿真结果显示,在3.1~10.6GHz频率变化范围内,低噪声放大器达到平均17.5dB的电压增益,输入和输出的回波损耗均低于-8dB,最小噪声系数约为2.8dB,在电源电压为1.5V下功耗约为11.35mW.  相似文献   

6.
使用TSMC0.18μmCMOS工艺实现3.1~8.0GHz超宽带接收机前端电路芯片设计,并利用ADS软件进行仿真、电路参数调整。电路架构包括:单端输入差动输出之超宽带低噪声放大器、Balun(Balance-unbalance)以及差动输入/输出的超宽带降频混频器,主要特点是在低噪声放大器输出端和混频器之间加入Balun,提升电路性能并减少芯片面积。芯片测试结果:在供给电压1.8V下,频宽为3.1~8.0GHz,S11〈-15。3dB,转换增益为24.6dB,功率消耗为37.98mW;包台接脚,芯片面积0.985(0.897×1.098)mm2。  相似文献   

7.
微波超宽带低噪声放大器的设计   总被引:7,自引:0,他引:7  
设计和制作一种小型超宽带低噪声晶体管放大器 ,采用全微带匹配网络和负反馈技术 ,利用新型晶体管器件 HEMT,经自编的程序 MMatch和商业软件 Touchstone双重辅助设计 ,实现在 0 .9-3.6 GHz两个倍频程的超宽带范围内增益 >2 9.4 d B,增益平坦度 <5 % ,噪声系数 <1 .8d B,输入、输出驻波比 <2 .2 ,1 d B,压缩点输出功率 >1 7.9d Bm.该放大器制作在 5 2× 2 5 mm2的聚四氟乙烯基板上 ,经测试满足设计要求 .  相似文献   

8.
毫米波单片低噪声放大器的研制   总被引:1,自引:0,他引:1  
采用OMMIC0.18μm GaAs pHEMT工艺,研制了两级和三级2种毫米波单片低噪声放大器.以最小噪声度量为设计依据,通过适当提高偏置电流的方法改善毫米波频段的增益,使得放大器在保持噪声系数较小的同时获得较高的增益.两级低噪声放大器采用串联负反馈结合并联负反馈的结构,可以获得比较平坦的增益;三级低噪声放大器采用三级相似的串联负反馈结构级联,可以紧凑结构、在相同的芯片尺寸下获得较高的增益,2种低噪声放大器芯片的尺寸均为1.5mm×1.0mm.测试结果表明,在28~40GHz频段内,两级低噪声放大器增益最大为15.4dB、噪声系数最小为3.2dB;三级低噪声放大器增益最大为24.8dB、噪声系数最小为2.73dB,达到预期目标.  相似文献   

9.
根据皮肤电位的电特性 ,设计出一种低噪声放大器 ,并计算和分析了这种放大器的噪声因子 ,计算和分析结果表明该放大器是能够用于检测皮电信号的低噪声放大器 .  相似文献   

10.
为了在不增加功耗的前提下提高低噪声放大器的增益,本文通过引入电流复用技术,并将偏置管兼作放大管,设计出一款全集成高增益低功耗超宽带低噪声放大器。采用TSMC公司的0.18μm CMOS工艺和Cadence软件对本低噪声放大器电路进行前仿真和后仿真。仿真结果表明,在1.5V的电压供电下,整个电路的功耗(power consumption,PD)为11.7mW,在2.8~8.5GHz的频段内,噪声系数(noise figure,NF)为3.05~4.1dB,正向增益(S21)为18.2~19.9dB,输入回波损耗(S11)、输出回波损耗(S22)均小于-10dB,群延迟为130~320ps,在6GHz处,三阶交调点IIP3为-12.16dBm,达到了设计目标。该低噪声放大器具有高增益低功耗的特点,可用于对增益和功耗要求都较高的接收机中。  相似文献   

11.
设计了应用于超宽带系统的低噪声放大器,通过优化噪声电阻,降低了匹配的难度,并最终设计了一个高通滤波器作为输入端的匹配网络,实现了在超宽频带内的匹配,并在噪声性能仅恶化0.4 dB下,获得了最大功率传输,实现了噪声和功率的同时匹配,降低了UWB系统对器件本身的依赖。  相似文献   

12.
闸述了L波段低噪声晶体管放大器中各种降低噪声措施的基本原理,给出了低噪声电路设计的一般原则,以及L波段卫星地面接收系统前端低噪声高频放大器输入级中噪声匹配电路的设计举例.  相似文献   

13.
本文设计的低噪声放大器利用集成芯片ATF36163完成了电路的设计,利用ADS软件进行设计、优化和仿真,最后给出了仿真结果、版图设计及实测结果。同时通过研究电路参数的灵敏度对该低噪声放大器进行了灵敏度分析,使得低噪声放大器不仅符合接收机对LNA的指标要求,还能使性能更加稳定。  相似文献   

14.
为了实现放大器在2.4~2.5 GHz范围内低噪声、高增益、输入输出阻抗匹配等性能指标,通过ADS2011仿真软件优化设计硬件电路,提出并加工制作了基于ATF54143的新型平衡式低噪声放大器.实测结果表明,该平衡式低噪声放大器的噪声系数低于3 dB,增益高达10 dB,输入端驻波比小于1.5,且输出端驻波比小于3.测试过程中发现在保证噪声系数较小的情况下,通过选取合适的偏置点可以明显地提高放大器的线性度.提出的平衡式低噪声放大器可以较好地应用于无线局域网领域,具有较强的实用价值.  相似文献   

15.
以实现声频放大器低噪声化为出发点,阐述了具体设计的几个方面.从低噪声放大器设计的基本原理和方法入手,对晶体管放大器的噪声模型(En-In模型)作了分析,并推导出一种实用的最佳源电阻Rsopt近似求法.还对系统电路的低噪声设计略加探讨.  相似文献   

16.
针对北斗接收机易受高功率微波干扰问题,采用圆极化贴片天线为辐照对象,基于CST(computer simulation technology)微波工作室和ADS(advanced design system)2种软件的联合仿真方法,将天线辐照产生的感应电动势注入接收机射频前端电路,并设置节点监测电路参数。仿真实验分析了窄带和超宽带高功率微波对导航接收机辐照的前门耦合过程,结果表明,超宽带电磁脉冲可以引起北斗接收机二级低噪声放大器晶体管烧毁,窄带电磁脉冲会造成前端限幅二极管击穿,造成导航系统无法工作。研究确定了接收机电路的易损部件,为北斗导航接收机的电磁防护设计提供了依据,研究方法也可为其他电磁脉冲前门耦合效应仿真实验提供参考。  相似文献   

17.
为解决低噪声放大器设计时带宽和驻波的问题,提出一种结合平衡放大结构和负反馈技术设计宽带低噪声放大器的方法。采用ATF38143晶体管,利用ADS软件对其进行匹配优化,以自偏压的形式提供负压简化电路,通过并联谐振电路调节增益平坦度,设计出一个工作在1.5~2.5 GHz内、端口驻波小于1.4,噪声系数优于0.55、最大增益大于14 dB、带内增益平坦度优于2 dB的宽带低噪声放大器,很好地解决了低噪声放大器的带宽和驻波问题。  相似文献   

18.
通信技术日新月异,通信产品的更新换代越来越快,性能越来越优,客服体验要求越来越高,无疑对通信芯片的设计提出了更高的要求和挑战。通信芯片的核心在于接收机,而接收机的关键在于低噪声放大器。低噪声放大器的核心指标是噪声、增益和线性度。低噪声放大器线性度对整个系统的线性度起着重要作用,它的非线性越小越好。低噪声放大器的线性度受偏置电路的直流阻抗影响较大。文中对一种工作在S波段,能极好地提高低噪声放大器线性度的偏置电路给出了数学证明。  相似文献   

19.
本文定量地导出了反馈放大器的 E_n—I_n 等效输入噪声模型参量与基本放大器和反馈网络的模型参量间的解析关系式,给出了低噪声反馈放大器的设计要点。  相似文献   

20.
本文定量地导出了反馈放大器的E_n—I_n等效输入噪声模型参量与基本放大器和反馈网络的模型参量间的解析关系式,给出了低噪声反馈放大器的设计要点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号