首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
在传统共栅放大器结构基础上,基于0.18μm CMOS工艺,提出一种带多重反馈环路技术的0.8~5.2GHz宽带低噪声放大器(LNA).该电路采用的负反馈结构在改善噪声系数和输入阻抗匹配的同时并不需要消耗额外的功耗;采用的双重正反馈结构增加了输入级MOS管跨导设计的灵活性,并可通过输出负载阻抗反过来控制输入阻抗匹配,使得提出的LNA在宽频率范围内实现功率增益、输入阻抗与噪声系数的同时优化.后版图仿真结果显示,在0.8~5.2GHz频段内,该宽带LNA的功率增益范围为12.0~14.5dB,输入反射系数S_(11)为-8.0~-17.6dB,输出反射系数S_(22)为-10.0~-32.4dB,反向传输系数S12小于-45.6dB,噪声系数NF为3.7~4.1dB.在3GHz时的输入三阶交调点IIP3为-4.0dBm.芯片在1.5V电源电压下,消耗的功率仅为9.0mW,芯片总面积为0.7mm×0.8mm.  相似文献   

2.
在传统共栅放大器结构基础上,基于0.18 μm CMOS工艺,提出一种带多重反馈环路技术的0.8~5.2 GHz宽带低噪声放大器(LNA). 该电路采用的负反馈结构在改善噪声系数和输入阻抗匹配的同时并不需要消耗额外的功耗;采用的双重正反馈结构增加了输入级MOS管跨导设计的灵活性,并可通过输出负载阻抗反过来控制输入阻抗匹配,使得提出的LNA在宽频率范围内实现功率增益、输入阻抗与噪声系数的同时优化. 后版图仿真结果显示,在0.8~5.2 GHz频段内,该宽带LNA的功率增益范围为12.0~14.5 dB,输入反射系数S11为-8.0~-17.6 dB,输出反射系数S22为-10.0~-32.4 dB,反向传输系数S12小于-45.6 dB,噪声系数NF为3.7~4.1 dB. 在3 GHz时的输入三阶交调点IIP3为-4.0 dBm. 芯片在1.5 V电源电压下,消耗的功率仅为9.0 mW,芯片总面积为0.7 mm×0.8 mm.  相似文献   

3.
为解决低噪声放大器设计时带宽和驻波的问题,提出一种结合平衡放大结构和负反馈技术设计宽带低噪声放大器的方法。采用ATF38143晶体管,利用ADS软件对其进行匹配优化,以自偏压的形式提供负压简化电路,通过并联谐振电路调节增益平坦度,设计出一个工作在1.5~2.5 GHz内、端口驻波小于1.4,噪声系数优于0.55、最大增益大于14 dB、带内增益平坦度优于2 dB的宽带低噪声放大器,很好地解决了低噪声放大器的带宽和驻波问题。  相似文献   

4.
从获取最小噪声系数角度来进行电路设计,采用Avago公司的0.2um GaAs pHEMT工艺芯片(T=18GHz),设计了工作于X波段(9-11GHz)的两级宽带低噪声放大器。测试结果为:在9-11GHz,噪声系数小于1.15dB,最小噪声系数在9.8GHz为1.015dB,功率增益在所需频段9-11GHz大于24dB,输入和输出回波损耗均小于-10dB。  相似文献   

5.
提出了一种采用0.18μm CMOS工艺的3.1~10.6GHz超宽带低噪声放大器.电路的设计采用了电流复用技术与阻抗反馈结构,具有低功耗和平坦增益的特性.仿真结果显示,在3.1~10.6GHz频率变化范围内,低噪声放大器达到平均17.5dB的电压增益,输入和输出的回波损耗均低于-8dB,最小噪声系数约为2.8dB,在电源电压为1.5V下功耗约为11.35mW.  相似文献   

6.
采用标准0.35 μm SiGe HBT工艺设计了工作频段在3.1~10.6 GHz的超宽带低噪声放大器.从宽带电路和高频电路设计的器件选择、电路结构选择等方面讨论了超宽带低噪声放大器的设计.结果表明,通过合适的电路结构和器件参数选择,可以采用0.35μm SiGe HBT工艺制备满足超宽带系统要求的低噪声放大器.在整个工作频段内所设计的低噪声放大器输入输出匹配S11和S22均优于-8dB,噪声系数为3.5dB,电路的工作电压为2.5 V,电流消耗为4.38 mA.  相似文献   

7.
提出了一种可用于0.1-1.2 GHz射频接收机前端的宽带巴伦低噪声放大器(Balun-LNA).采用噪声抵消技术,输入匹配网络的沟道热噪声和闪烁噪声在输出端被抵消,在宽带内可同时实现良好的输入匹配和低噪声性能.通过分别在输入匹配级内增加共源放大器,在噪声抵消级内增加共源共栅放大器实现单端转差分功能.电路采用电流复用技术降低系统功耗.设计基于TSMC 0.18 μm CMOS工艺,LNA的最大增益达到13.5dB,噪声系数为3.2-4.1 dB,输入回波损耗低于-15 dB.在700 MHz处输入1 dB压缩点为-8 dBm,在1.8 V供电电压下电路的直流功耗为24 mW,芯片面积为0.062 5 mm 2 .  相似文献   

8.
基于0.5μm赝配高电子迁移率晶体管(pHEMT)工艺,设计制造了一款工作于450~470MHz频段的单片集成低噪声放大器(LNA),该LNA采用阻容负反馈的方式实现输入阻抗匹配,减小了无源元件占有的芯片面积,达到了单片集成的目的,同时降低了使用成本.测试结果表明,该单片集成LNA具有40dB左右的增益和约0.5dB的噪声系数,其低噪声性能十分优秀,这得益于pHEMT管不引入高损耗的片上电感所带来的好处及其本身优异的低噪声特性.  相似文献   

9.
S波段单片低噪声放大器   总被引:1,自引:0,他引:1  
S波段单片低噪声放大器采用了0.5 μm φ3英寸(76.2 mm)砷化镓赝配高电子迁移率晶体管工艺,由三级自偏电路构成,单电源( 5 V)供电.对3英寸圆片上的放大器芯片进行直流测试后,随机抽取一定数量的样品装架测量, 并对放大器进行了增益和相位的统计.统计表明:在S波段带宽300 MHz范围内,增益在24.5~26 dB范围内, 相位线性度小于1°,相位偏差±7°,噪声系数最大1.4 dB,输入输出驻波最大1.4,1 dB压缩输出功率大于10.5 dBm.另外,还对放大器进行了高温、低温环境试验和静电模拟和试验.  相似文献   

10.
针对互补金属氧化物半导体工艺在高频时性能差的缺点,基于砷化镓赝配高电子迁移率晶体管器件,设计了一种用于无线通信系统的宽带低噪声放大器,宽带低噪声放大器的设计采用负反馈来获得平坦的增益和较低的输入输出反射系数。电路版图设计好后利用Advanced Design System 2005进行仿真。仿真结果表明,该放大器在0.3~2.2 GHz频带内,增益高于12 dB,且变化小于3 dB;噪声系数在1.04~1.43 dB之间,输入输出反射系数均小于-10 dB,群延时特性在整个频带内接近线性,且在整个频带内无条件稳定,所设计的宽带低噪声放大器能够很好地满足实际需要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号