首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 479 毫秒
1.
CO2加氢被认为是目前固定大量排放CO2的最好方法之一.研发出一种碳纳米管(CNT)促进的Cu-ZrO2-HZSM-5沸石分子筛双功能混合型催化剂,将其用于CO2加氢合成甲醇和甲醇脱水生成二甲醚(DME)二步串联催化一器化,实现由(CO2+H2)直接合成DME.在5.0 MPa,523 K,V(H2)∶V(CO2)∶V(N2)=69∶23∶8,空速(GHSV)=25 000mL/(h.g)的反应条件下,在所研发(Cu2Zr3-10%CNT)-30%HZSM-5催化剂上,CO2加氢的转化率达9.44%,比相应单功能加氢催化剂(Cu2Zr3-10%CNT)的相应值(7.00%)提高35%.CNT能作为Cu-ZrO2-HZSM-5双功能混合型催化剂的促进剂.在上述反应条件下,含CNT的催化剂的DME时空产率达438mg/(h.g),比不含CNT的原双功能混合型基质催化剂的相应值(395mg/(h.g))提高11%.结果证实,利用双功能混合型催化剂,将CO2加氢合成甲醇和甲醇脱水生成DME两个过程串联催化一器化,能大幅度提高CO2加氢转化的效率.  相似文献   

2.
用一种金属Co修饰多壁碳纳米管基复合材料(y%Co/CNT)作为促进剂,制备一种高效新型的y%Co/CNT促进CuO-ZnO-ZrO2基催化剂(记为CuiZnjZrk-x%(y%Co/CNT)),考察其对CO2加氢制甲醇的催化性能.实验结果显示,在组成经优化的Cu8Zn2Zr5-10%(4.5%Co/CNT)催化剂上,5.0 MPa,523 K,V(H2)∶V(CO2)∶V(N2)=69∶23∶8,GHSV=25 000 mL/(h.g)的反应条件下,CO2加氢的转化频率达4.99×10-3s-1,分别是相同条件下非促进的原基质Cu8Zn2Zr5和单纯CNT促进的对应物Cu8Zn2Zr5-10%CNT上的相应值(4.31×10-3和4.64×10-3s-1)的1.16和1.08倍;催化剂的表征结果显示,金属Co修饰CNT促进的催化剂对H2优良的吸附活化性能对CO2加氢转化频率(TOF)的显著提高起主要作用.在CO2加氢产物中甲醇的C-基选择性达97.9%,单程时空产率为699 mg/(h.g),具有实用前景.  相似文献   

3.
Co修饰碳纳米管促进的Cu-ZrO2催化剂上CO2加氢制甲醇   总被引:3,自引:1,他引:2  
利用微波助多元醇化学还原沉积法,制备一类Co修饰的多壁碳纳米管(CNT)基复合材料(y%Co/CNT),进而用其作为添加剂,制备共沉淀型y%Co/CNT促进的Cu-ZrO2催化剂,CuiZrj-x%(y%Co/CNT).Co对CNT的修饰明显地提高了该催化剂对CO2加氢制甲醇的催化活性.在Cu1Zr1-10%(4.3%Co/CNT)催化剂上,5.0 MPa,513 K,V(H2)/V(CO2)/V(N2)=69/23/8,GHSV=8 000 mL/(h·g)的反应条件下,CO2加氢的转化频率(TOF,即单位时间(s)内在单个表面活性金属Cu0位上CO2加氢转化的分子数)达2.89×10-3s-1,是相同条件下非促进的原基质Cu1Zr1和单纯CNT促进的对应物Cu1Zr1-10%CNT上这个值(2.36×10-3s-1和2.40×10-3s-1)分别的1.22和1.20倍;在CO2加氢产物中甲醇的C-基选择性为~92%,时空产率达176 mg/(h·g-cat.).催化剂的表征研究显示,Co修饰CNT促进的催化剂对H2优良的吸附活化性能对CO2加氢转化频率(TOF)的显著提高起着重要作用.  相似文献   

4.
针对合成气直接转化制汽油馏分反应,合成了Zn-ZrO_2金属氧化物与沸石分子筛复合的双功能催化剂,结果显示Zn-ZrO_2/H-ZSM-5具有较高的CO转化率和汽油馏分选择性。考察了反应温度和接触时间对Zn-ZrO_2和Zn-ZrO_2/H-ZSM-5双功能催化剂的影响,证实了合成气经甲醇/二甲醚中间体制汽油馏分的反应路径。研究了Zn/Zr摩尔比、H-ZSM-5分子筛的Si/Al比对催化性能的影响,结果表明Zn/Zr摩尔比为1∶32、Si/Al为200时可获得了较好的转化率(52%)和汽油馏分选择性(62%),且催化剂经100h测试稳定性良好。  相似文献   

5.
用自行制备的多壁碳纳米管(MWCNTs)作为添加剂,制备一类用于合成气制低碳醇的共沉淀型MWCNTs掺合的Co-Cu催化剂(CoiCuj-x%MWCNTs).催化剂组成的优化结果显示:MWCNTs的添加量及Co、Cu两种金属组分的相对含量(摩尔比)对低碳醇合成(HAS)反应活性和产物选择性的影响显著;MWCNTs的添加量以11%为佳,Co/Cu摩尔比以3∶1为宜.在所制备的Co3Cu1-11%MWCNTs催化剂上,5.0 MPa、573 K、V(H2)/V(CO)/V(CO2)/V(N2)=45/45/5/5和GHSV=10 000 mL/(h.g)的反应条件下,CO的转化率可达39.1%,总(C1~8)醇和二甲醚(DME)的C-基选择性合计达到74.3%,C2~8-醇和DME的时空产率合计达1 072 mg/(h.g);在含氧产物中,S(C2~8-醇 DME)/S(MeOH)=17.8(C-基选择性比),展现其作为燃料油品添加剂的应用前景.催化剂的制备表征研究揭示,氧化态前驱物中高度分散的CuCo2O4尖晶石微晶相的形成对于营造/产生低碳醇合成所需固溶体型双金属CoiCuj催化活性位至关重要;MWCNTs促进的催化剂对氢吸附、活化的优异性能在促进催化剂活性和选择性的提高、以及抑制水煤气变换副反应等方面都可能起重要作用.  相似文献   

6.
合成气经二甲醚羰基化和乙酸甲酯加氢一器化制乙醇技术因原子经济和环境友好而备受关注,但二甲醚羰基化催化剂作为该过程的关键技术之一存在活性较低,进而导致乙醇选择性不高的问题.利用硬模板剂在水热过程中对丝光沸石(MOR)的微观形貌尺寸和酸性质进行调控,以提高Cu/MOR催化剂的羰基化能力,进而提升乙醇的选择性.结果表明:碳纳米管(CNT)硬模板剂可以有效地提升乙醇的选择性,Cu/MOR-0.1CNT-24 h(合成过程中CNT的添加量为0.1 g,晶化时间为24 h)作为羰基化催化剂时乙醇的选择性最优,在压力为2.0 MPa、温度为210℃、进料空速为2 400 mL/(g·h)、进料气组成为V(H2)∶V(CO)∶V(CO2)∶V(N2)=60∶30∶5∶5的反应条件下,CO的转化率约为5%,而乙醇选择性可达到60%以上.X射线粉末衍射(XRD)、场发射扫描电子显微镜(SEM)、氮气物理吸脱附、吡啶吸附红外(Py-IR)和氨气程序升温脱附(NH3-TPD)的表征结果表明,在MOR合成过程中添加CNT可以...  相似文献   

7.
在CuO—ZrO2催化剂中引入ZnO2考察了ZnO对CuO-ZrOz物化性能及催化CO2加氢合成甲醇性能的影响,优化了CuO—ZnO—ZrO2催化剂的Zn/Zr比。结果表明,适量ZnO的添加增加了催化剂中铜的比表面积,显著提高了催化剂表面的碱性位数目,从而有利于H2的吸附解离和C02的吸附。ZnO的加入提高了催化剂的催化活性和甲醇选择性,当Zn/Zr比为2:3时,催化活性最高。  相似文献   

8.
采用甲醇合成 C30 2催化剂与甲醇脱水 CM- 3- 1催化剂组成的复合催化剂 ,在高压机械搅拌反应釜中进行了 CO2 加 H2 一步法合成二甲醚的研究 ,使用 CO2 ∶ H2 =1∶ 3(V∶ V)的原料气考察了温度、压力对反应转化率与各产物选择性的影响。  相似文献   

9.
用自行制备的碳纳米管(CNTs)作为促进剂,制备一类共沉淀型CNTs促进Co-Cu基催化剂.实验发现,该类催化剂对CO加氢制低碳醇显示出异常高的转化活性和生成C2~4-含氧产物,尤其是丁醇(BuOH)和二甲醚(DME)的选择性;在Co3Cu1-11%CNTs催化剂上、5.0 MPa,573 K、V(H2)/V(CO)/V(CO2)/V(N2)=46/46/5/3,GHSV=10 000 mL(STP).h-1.g-cat.-1反应条件下,所观测到的CO转化率达到38.0%,是相同反应条件下不含CNTs的参比体系(Co3Cu1)上观察值(25.3%)的1.50倍;BuOH和DME成为两种最主要的产物,其C-基选择性分别达到45.0%和14.8%,两者的质量百分数合计占C1~4-含氧产物总量的~83%,展示其作为油品添加剂或代用合成燃料的应用前景.实验结果表明,对于CNTs促进的Co3Cu1体系,原料气中适量CO2的存在对CO的转化和含氧产物(尤其是BuOH)的选择生成有显著促进作用.  相似文献   

10.
碳纳米管促进Cu-基高效甲醇合成催化剂   总被引:8,自引:1,他引:8  
用自行制备的碳纳米管(CNTs)作为促进剂,研制出一类高效甲醇合成催化剂CuiZnjAlk-Ox-wt%CNTs,评价它们对CO/CO加氢成甲醇的催化活性,并与非CNTs促进的相应体系作对比研究。实现发现,碳纳米管能显著地促进甲醇合成反应活性的提高。在493K,5.0MPa,H2/CO/CO2/N2=62/30/5/3(V/V),GHSV=8000h^-1的反应条件下, Cu6Zn3Al1-Ox-12.5wt%CNTs催化剂上,甲醇的时空产率达1064mgh^-1(g-catal)^-1;产物中甲醇的选择性达98%以上;而在相同的制备和反应条件下、在非促进相应催化剂Cu6Zn3Al1-Ox上,甲醇的时空产率只达729mgh^-1(g-catal)-1.H2-TDP观测揭示,常压下在CNTs材料、以及CNTs促进催化剂CuiZnjAlk-Ox-wt%CNTs上,可以吸附存储着数量相当可观、在423-573K温度范围处于可逆吸、脱附的吸附氢物种。这一特性将有助于在甲醇合成反应条件下,营造较高氢稳态的表面氛围,以有利于提高表面加氢反应的速率;与此同时,很可能由于加氢活性的提高,使得碳纳米管促进催化剂上甲醇合成反应所需温度比非促进的相应体系下降15-25K,这在相当大程度上将有利于提高CO的平衡转化率和甲醇合的平衡产率。本文结果表明,碳纳米管对H2优异的吸附、活化及存储性能对于促进其所改进催化剂上甲醇合成反应活性的显著提高,起着关键作用。  相似文献   

11.
采用改进的共沉淀法制备锰锆镧复合氧化物(MnxZr1-xLayO2-σ)载体,然后采用等体积浸渍法负载活性组分Cu,制得铜基锰锆镧复合氧化物(Cuλ/MnxZr1-xLayO2-σ)催化剂.考察该催化剂催化CO、C3H6和NO转化反应的三效催化性能,并且利用XRD、TG和SEM等方法研究催化剂结构与性能的关系.实验结果表明:Mn:Zr:La摩尔比为0.9:0.1:0.06,Cu负载量为5%时,制得的Cu5%/Mn0.9Zr0.1La0.06O2-σ催化剂催化CO、NO和C3H6转化反应的活性良好;Mn、Zr和La能够形成稳定的Mn-Zr-La固溶体,可以有效提高催化剂的低温活性和热稳定性,并且不出现Cu、Mn、Zr或者La物种在载体表面富集的现象;因此,Cu5%/Mn0.9Zr0.1La0.06O2-σ催化剂具有良好的性能,在该催化剂上CO、C3H6和NO的起燃温度(T50)分别为112℃,253℃,210℃,完全转化温度(T90)分别为154℃、319℃和288℃,至500℃时转化率分别高达100%、97.5%和99.3%.  相似文献   

12.
二氧化碳加氢合成二甲醚CuO—ZnO/HZSM—5催化剂的研究   总被引:8,自引:0,他引:8  
在CuO-ZnO/HZSM-5双功能催化剂上进行了CO2加氢合成二甲醚的研究,实验结果表明,CuO-ZnO是CO2加H氢合成二甲醚双功能催化剂的加氢组分,HZSM-5是脱水组分,二者应尽可能地紧密结合,以便充分发挥二者的“协调”和“促进”作用;CuO-ZnO与HZSM-5的最佳配比为9:1(重量比)。通过DTA,XRD,TPR,H2-TPD,CO2-TPD,BET等方法对双功能催化剂进行表征。考察了催化剂的还原、吸附等特性,得到一些有意义的结果。  相似文献   

13.
TiO2改性的γ—Al2O3负载Cu催化上CO2加氢合成甲醇的研究   总被引:1,自引:0,他引:1  
在固定床高压微反装置上,系统研究了TiO2改性的γ-Al2O3负载Cu催化剂的CO,CO2加氢反应,活性评价结果表明,TiO2的添加极大地促进了Cu/γ-Al2O3催化剂的CO2加氢合成甲醇反应的活性,但是对CO加氢合成二甲醚有抑制作用,这表明CO2,CO加氢之间有着本质的区别。  相似文献   

14.
用Sc2O3作为促进剂,研发出一种Sc2O3掺杂的高效新型Ni-ZrO2基催化剂,该催化剂对CO和CO2共甲烷化制合成天然气(SNG)显示出高的活性和优异的热稳定性.在组成经优化的Ni6Zr3Sc1催化剂上,0.1 MPa,573K,V(H2)∶V(CO)∶V(CO2)∶V(N2)=75∶15∶5∶5,出口空速GHSV=40 000mL/(h·g)的反应条件下,在反应开始之后的20~332h的反应过程中,CO和CO2的转化率一直分别保持在100%和85%的高水平,产物甲烷的选择性一直保持在100%.耐热试验结果显示,在973K下经历24h甲烷化反应、而后降至573K的Ni6Zr3Sc1催化剂试样上,(CO+CO2)的总转化率仍能稳定地保持在80.2%的水平;而不含Sc2O3的原基质催化剂(Ni6Zr4)在经历相同耐热试验过程之后的(CO+CO2)总转化率骤降至2.7%,暗示其因烧结而失活.催化剂的表征结果证实,可观量的Sc3+溶解入ZrO2晶格导致具有c-ZrO2结构的单一c-(Zr-Sc)Oy相的生成并使其稳定化,这类c-(Zr-Sc)Oy相与Ni6Zr3Sc1催化剂的高活性,尤其与优良的热稳定性,密切相关.  相似文献   

15.
采用甲醇合成催化剂C207和分子筛HZSM-5混合制得CO2加氢合成二甲醚双功能催化剂,并在微型固定床反应装置上进行了活性评价。考察了反应温度、压力、氢碳摩尔比、空速等工艺条件对催化反应的影响。结果表明,温度对催化剂活性影响显著,适当提高温度有利于提高反应速率,适宜的温度操作范围260~270℃,增加压力,提高氢碳摩尔比有利于提高CO2转化率、二甲醚收率;适宜的空速范围1500~3000h^-1。  相似文献   

16.
HZSM-5催化剂的催化脱硫反应研究   总被引:6,自引:0,他引:6  
采用浸渍法制备了一系列不同镧负载量的HZSM-5分子筛催化剂,并对其进行了X射线衍射、红外光谱、比表面和NH3-程序升温脱附等方面的表征。结果表明,HZSM-5分子筛的结晶度均达到了85%以上,掺镧后的HZSM-5分子筛在波数1100cm^-1附近的非对称振动特征峰有一定程度的蓝移,BET法的比表面积及直径、单点体积、BJH法的吸附体积及脱附体积均有所增大,反应的比表面活性有所提高,致使弱酸量大幅度减少,中强酸、强酸量大幅度增大。在活性氢物质甲醇存在时,固定床微型反应器中噻吩的催化转化反应结果表明,催化剂的脱硫反应活性明显增强,噻吩转化率提高,噻吩转化为H2S的量增加,但液相产物趋向复杂,选择性有所降低,且在掺镧约1.0%左右噻吩的转化率达到51.3%。  相似文献   

17.
通过等体积浸渍法制备了Zn改性的HZSM-5催化剂,并在连续流动固定床反应器上研究了Zn-HZSM-5催化剂的甲醇芳构化性能。结合X射线衍射(XRD)、吡啶吸附傅立叶变换红外光谱(Py-IR)、N2吸附-脱附方法对金属锌改性HZSM-5催化剂进行了表征。考察了Zn负载量和操作条件对甲醇芳构化反应的影响,并针对甲醇芳构化反应过程中强放热导致催化剂床层温升过高而使催化剂结焦失活的现象,探讨了催化剂床层温度控制的影响因素。研究结果表明,锌改性HZSM-5的最佳负载量(质量分数)区间为2%~3%;2.5%Zn-HZSM-5催化的固定床反应器中甲醇芳构化的最优工艺条件为常压,400~430℃,甲醇质量空速小于2 h-1;降低甲醇水溶液中甲醇物质的量比、加大气相空速中氮气分压均能降低催化剂床层的温升。  相似文献   

18.
Ni修饰多壁碳纳米管材料的制备及表征研究   总被引:3,自引:0,他引:3  
采用化学还原沉积法将少量镍负载分散到多壁碳纳米管(MWCNT,简写为CNT)上,制得一系列不同Ni载量的x%(质量百分数)Ni/CNT复合材料;利用多种谱学工具(如TEM,SEM、XRD、H2 TPD和CO TPD)对其物化性能进行表征,结果表明,所制得沉积镍颗粒粒径在~10nm量级;H2 TPD和CO TPD测试结果表明,经Ni修饰的CNT比单纯CNT对H2和CO具有更强的吸附活化能力,其所促进的Cu基催化剂对CO加氢成甲醇的催化活性比无CNT促进或单纯CNT促进的同类催化剂均明显提高.  相似文献   

19.
采用水热法合成了微米HZSM-5分子筛(HZSM-5)和纳米HZSM-5分子筛(nano-HZSM-5),通过XRD和SEM对样品进行了表征。结果表明:所得样品为纯态的HZSM-5和nano-HZSM-5分子筛。以上述样品为载体,制备了Pd基催化剂,并用于H2选择还原NO研究。在整个测试温度范围内,Pd/HZSM-5表现出良好的催化性能,优于Pd/nano-HZSM-5。当温度高于100℃时,Pd/HZSM-5上的NO可达到完全转化。此外,Pd含量仅影响低温时(100℃)Pd/HZSM-5的催化活性。上述结果说明所制备的Pd/HZSM-5是H2选择还原NO的优良催化剂。  相似文献   

20.
CO加氢合成甲醇Cu-Mn~(2+)/SiO_2催化剂的研究   总被引:1,自引:1,他引:1  
负载型Cu/SiO_2或Mn/SiO_2催化剂对CO加氢合成甲醇反应的催化活性甚低,而Cu-Mn~(2+)/SiO_2催化剂的催化活性却很高,研究表明,Mn~(2+)的加入使催化剂表面的分散度增大,并可能通过Cu-Mn~(2+)间的有关轨道相互作用或通过Cu、Mn与载体间的氧桥间接发生作用,使催化剂吸附氢和异裂氢的能力增大,为HCOO~-后续加氢提供充足的氢原,从而提高Cu-Mn~(2+)/SiO_2催化剂CO加氢合成甲醇的催化活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号