首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
在智能车路径跟踪控制研究中,针对预瞄距离对路径跟踪精度影响较大的问题,提出了一种根据车速大小调整预瞄距离的智能车模糊控制方法。建立了车辆运动学模型和预瞄模型,给出了预瞄距离的确定方案,结合模糊理论设计出一种变预瞄距离的路径跟踪模糊控制器,并以双移线为目标路径在不同车速下进行了仿真。仿真结果显示,该车型变预瞄距离跟踪控制器的最大横向偏差不超过0.18 m,与固定预瞄距离的控制器相比,最大横向偏差在18 km/h、54 km/h车速下分别降低35%和31%,跟踪精度得到提升。  相似文献   

2.
为了实现装备驾驶机器人车辆的路径及速度跟踪控制,提出了1种基于模糊免疫比例积分微分(PID)的控制方法。通过比较车辆实际行驶路径与期望路径的侧向偏差,模糊免疫比例路径跟踪控制器控制转向机械手操纵方向盘。通过计算期望车速与实际车速的偏差,模糊免疫PID速度跟踪控制器控制制动/油门机械腿分别操纵制动/油门踏板。通过引入车速反馈不断更新汽车的侧向加速度增益,实现了车辆转向控制与纵向车速控制的解耦。Carsim/Simulink软件的联合仿真结果显示,车辆路径跟踪和车速跟踪的最大误差分别为0.28 m和1 km/h。  相似文献   

3.
针对无人驾驶汽车局部路径规划与跟踪控制,提出一种基于改进A*算法的局部路径动态规划算法及一种基于改进LQR算法控制理论结合模糊控制与PID控制的路径跟踪控制算法。主要包括:搭建无人车辆在Frenet坐标系下利用栅格法构建预行驶区域模型;优化改进节点扩展方向,提出针对无人驾驶的五邻域扩展节点方式;A*算法一次规划出代价值最小的目标节点,二次A*算法规划出实时动态最优路径。另外,搭建以路径曲率变化率和横向误差变化率为状态变量的横向路径模糊跟踪控制模型,搭建以纵向误差和纵向误差变化率为状态变量的模糊PID控制模型解决参数难调问题。通过Carsim、Simulink与Perscan联合仿真平台验证设计的路径规划与跟踪控制算法有效性。  相似文献   

4.
针对航速和航道未知扰动等因素,提出一种速度矢量场二阶滑模无人水面艇(USV)引导律。首先,建立无人艇运动学和航向角动力学模型;其次构造路径误差(ye)模型,设计基于航速(Vg)的路径误差矢量场,速度越大,航向角变化越小;再结合二阶滑模面设计一种速度矢量场二阶滑模无人艇引导律,并考虑未知扰动因素Δ分析速度矢量场二阶滑模无人艇引导律的稳定性。仿真结果表明:相比于经典矢量场,速度矢量场有效实现航速Vg越快,航向角变化率越小,矢量场越平缓,提高了USV航行安全性和稳定性;基于速度矢量场二阶滑模无人艇引导律的路径跟踪控制系统鲁棒性更强,路径跟踪准确度更高,能够较好地完成路径跟踪。  相似文献   

5.
为满足智能车在低速和高速运行时稳定和精确的轨迹跟踪,提出了一种基于几何模型的智能车轨迹跟踪算法。算法首先通过惯性导航系统的航向角参数,计算车辆纵向运动方向和轨迹跟踪点切线方向之间的切向角,再通过横向偏差角进行转向的偏差校正,实现轨迹的实时跟踪。以真实智能车在实际道路环境中对算法进行了20 km/h下的小曲率直道和大曲率路口弯道以及50 km/h下的小曲率直道的轨迹跟踪实验。实验结果表明,在不同的典型路况下,采用该算法的智能车能够实现稳定和精确的轨迹跟踪;与其他轨迹跟踪算法相比,该算法具有较好的性能。  相似文献   

6.
针对在障碍物环境下的避障路径动态规划效果较差,以及在面对复杂工况和曲率较大的路况时,跟踪控制的效果仍然不理想等问题,本文以智能车辆为研究对象,提出了一种模型预测控制(MPC)结合人工势场(APF)算法的路径规划跟踪系统。将改进的势场模型函数引入到MPC的目标函数和约束中,设计了基于MPC和APF的避障路径动态规划器。。运用模糊控制对MPC的车辆横向路径跟踪控制器的权重系数进行优化。仿真结果表明:在干燥路面下,与MPC控制器相比,模糊MPC路径跟踪控制器的最大横向偏差减少19.14%。在湿润路面下,模糊MPC控制器最大横向偏差减少0.55 m。基于MATLAB/Simulink与Carsim软件搭建避障路径规划与跟踪控制联合仿真模型,选择动态障碍物不同速度进行障碍物路径动态规划及跟踪控制仿真试验。实验结果表明:跟踪规划路径过程中的最大横向偏差约为0.170 m,说明规划的避障路径能够安全有效地避开障碍物。  相似文献   

7.
针对重载铁路常见桥梁结构特点,建立货物列车-轨道-桥梁系统(简称"FTTB系统")空间振动计算模型;按照列车脱轨能量随机分析理论,提出重载铁路FTTB系统横向振动稳定性分析方法。通过算例,计算圆形墩加固前、后FTTB系统横向振动稳定性及其振动响应。研究结果表明:算例中圆形墩加固后FTTB系统抗脱轨能力可提高50%;圆形墩加固前、后FTTB系统横向振动失稳临界车速分别为134.45 km/h和156.99 km/h,容许极限车速分别为107.56 km/h和125.59 km/h;圆形墩加固后货物列车以80 km/h车速过桥时平稳性有保证;与加固前相比,桥梁跨中和墩顶横向位移分别减小54.5%和83.8%。该分析方法能够同时反映货物列车脱轨信息和FTTB系统空间振动特性,可为桥上货物列车脱轨预防措施提供更加全面、科学的评价。  相似文献   

8.
列车节能运行的算法及实施技术研究   总被引:1,自引:0,他引:1  
根据国内外列车节能研究的最新成果,综合利用既有的节能优化操纵方法,设计了列车节能运行的计算机算法,建立了列车节能运行的模拟系统.同时根据模拟系统的功能要求对不同目标速度及线路改造的情况进行了节能模拟,研究了不同目标速度、不同线路条件下的列车节能效果.结论指出:目标速度由60 km/h降低为50 km/h时,能耗消耗可减少14.4%;对线路进行适当改造可使能耗消耗减少9.2%,运营费支出降低8.9%.  相似文献   

9.
为实现结构化道路下智能车最优避障轨迹的规划,设计了基于层次分析法的轨迹择优体系。首先,以三次B样条曲线为路径规划器,生成满足曲率连续且曲率最值受控的路径,并以此构造路径簇;其次,为实现主客观指标的量化表达,以平滑性和经济性为准则,以路径长度、曲率和、曲率变化率和以及偏离目标点的距离为子准则,构造AHP路径择优体系,筛选出最优的路径;然后,采用三次多项式表征速度相对时间的变化,以满足速度、加速度、加速度导数的连续;最后,参考国家标准设计测试场景,验证方法的稳定性与算法的实时性。经5 000次循环仿真测试表明:算法具有较高的实时性,0.1 s内能规划出可行轨迹的概率在94%,0.16 s内则能100%规划出可行轨迹;规划的轨迹便于车辆跟踪,方法具有较高的稳定性,实车峰值横向误差小于0.21 m,峰值车速误差小于0.42 m/s,平均车速误差小于0.11 m/s,总体呈收敛的趋势。  相似文献   

10.
为了研究匝道车道数变化过渡段长度和渐变率,参照前人研究成果分析匝道车道数变化过渡段的行车特性,提出利用换道模型研究这2个设计指标的方法。首先建立满足过渡段车辆行驶特征的等速偏移余弦曲线换道模型,并应用德国UMRR交通管理传感器的实测数据证明该换道模型的合理性;然后对该模型中最大横向加速度和最大横向加速度变化率2个关键参数进行深入研究;最后依据该模型,提出基于设计速度的匝道车道数变化过渡段长度和渐变率2个设计指标的推荐值,采用CarSim和TruckSim汽车动力学仿真软件分别建立了小汽车和大货车的仿真模型,利用该模型对提出的推荐值和《公路立体交叉设计细则》(JTG/T D21—2014)(下文简称规范)推荐值进行了对比验证。研究结果表明:基于等速偏移余弦曲线换道模型提出的匝道车道数变化过渡段设计指标,能保证车辆在过渡段沿特定最优轨迹安全、舒适行驶;规范推荐值仅能满足设计速度40km/h车辆的换道行为,此时的货车最大横向力系数为0.142;当设计速度在40km/h以下,横向力系数又远低于允许值,过度段长度浪费;当设计速度大于40km/h时,车辆的横向力系数已经超限,速度达到80km/h时,横向力系数超限达到315%,车辆在这种状态下行驶不安全。鉴于此,可以推测规范推荐值仅能满足设计速度40km/h的车辆行驶,高于和低于此速度时,匝道车道数变化过渡段的指标存在不合理性。  相似文献   

11.
为提高自动驾驶车辆的路径跟踪精度,针对自动驾驶车辆横纵向耦合控制问题,提出了带有前馈控制的PID+LQR联合控制策略。首先,利用二自由度车辆动力学构建路径跟踪误差数学模型,制定横纵向控制流程。随后,设计了用于横向控制的LQR控制器和用于纵向控制的PID控制器,将横纵向控制器进行整合,使得车辆在接收到决策规划系统给出的期望指令后可以进行跟踪行驶。借助CarSim和MATLAB/Simulink联合仿真平台,在连续工况下对该控制策略进行测试。结果表明,提出的横纵向耦合运动控制策略可以控制车辆沿着规划的轨迹行驶,且可将跟踪误差控制在较小的范围内。  相似文献   

12.
为准确估计车辆的行驶速度, 保证汽车的安全性, 设计了基于无味卡尔曼滤波算法(UKF: Unscented Kalman Filter)的车速估计器, 并与基于卡尔曼滤波(KF: Kalman Filter)算法所建立的估计器进行了比较。两个估计器都以七自由度整车模型为研究平台, 同时在Matlab中搭建了UKF和KF的算法模型。仿真实验结果表明, 当系统输入产生突变时, UKF算法与真实值的绝对误差率始终在4%以内, 比KF算法的误差率大约降低了3%, UKF车速估计器能很好地预测车速变化的趋势, 相对于KF估计算法效果更佳。  相似文献   

13.
为研究分布式驱动车辆(4wid)路径跟踪中的跟踪精度和稳定性的问题,提出了模型预测-模糊(Mpc-Fuzzy)的联合控策略, 缓解了单一模型预测控制下车辆跟踪精度与控制器计算压力间的冲突。采用模型预测控制设计了上层路径跟踪控制器,旨在利用模型预测“滚动优化”的优点降低跟踪误差的同时保证车辆的稳定性。下层采用模糊控制,将转向过度和转向不足量化为“方向偏差”和“位置偏差”,利用四轮转矩独立控制的优点进一步优化转矩输出,旨在降低模型预测控制器对参考模型线性化后带来的跟踪误差。为验证控制策略的可靠性,基于Carsim和Simulink.、Driving Scenario搭建联合仿真模型,将联合控制器和单运动学模型预测控制器进行对比研究。仿真结果表明联合控制器可在完成对给定路径跟踪的基础上,减少转向不足和转向过度的发生,降低了方向误差和位置误差。  相似文献   

14.
四驱混合动力轿车转弯工况路径跟踪控制   总被引:2,自引:1,他引:1  
针对四驱混合动力轿车,提出一种转弯工况下集成横向与纵向运动控制功能的路径跟踪控制策略.在建立车辆动力学与动力系统模型的基础上,设计了基于轨迹跟踪误差的驾驶员预瞄转向模型;采用模糊控制器确定了期望车速,对转矩分配问题进行优化研究;设计了车速与轨迹跟踪模型预测控制器;搭建了CarSim与MATLAB/Simulink联合仿真模型与自动驾驶模拟驾驶器,对控制策略进行了离线仿真和硬件在环仿真试验.研究结果表明,车辆转弯过程中路径及车速跟踪效果良好,满足转弯工况路径跟踪需求.  相似文献   

15.
自主车辆线性时变模型预测路径跟踪控制   总被引:7,自引:0,他引:7  
为提高自主车辆路径跟踪控制的实时性和鲁棒性,研究一种线性时变模型预测路径跟踪控制方法.建立用于控制器仿真验证的纵向侧向二维车辆非线性动力学模型;从二轮三自由度模型出发,推导出线性时变路径跟踪预测模型;引入向量松弛因子解决优化求解过程中硬约束导致的控制算法非可行解问题,基于模型预测控制理论将路径跟踪控制算法转化为带软约束的在线二次规划问题;最后通过Matlab/Simulink实现车辆动力学建模和控制器设计,双移线工况仿真结果表明,所设计的控制器能够适应不同车速、不同设计参数的鲁棒性要求.  相似文献   

16.
汽车加速度和速度因交通环境障碍物实时动态变化,智能汽车避障实时参考轨迹不光滑变化;参数摄动,车速实时变化和采集信号干扰,将造成智能汽车动态侧向避障精准控制困难。为此,提出考虑参数摄动的智能汽车动态侧向避障鲁棒控制策略。该控制策略分为动态轨迹规划层和动态轨迹跟踪层;动态轨迹规划层依据障碍物汽车加速度和速度动态变化,采用基于避障极限位置的动态轨迹规划算法,以规划能够保证智能汽车侧向安全避障的实时参考轨迹;动态轨迹跟踪层设计了考虑了质量、转动惯量和前后侧偏刚度参数摄动的鲁棒控制器,以实现实时动态参考轨迹精准跟踪。最后,利用Matlab/Simulink和Trucksim软件联合仿真,进行所提控制策略仿真验证。仿真结果表明:动态轨迹规划层能够依据障碍物汽车加速度和速度实时变化,实时规划了安全侧向避障动态参考轨迹;轨迹跟踪层克服了质量、转动惯量、前后侧偏刚度参数摄动,以及实时参考轨迹不光滑动态变化,平滑良好地跟踪了侧向避障实时参考轨迹。因此,所提控制策略实现了智能汽车安全动态侧向避障,同时确保了避障过程汽车横摆稳定性。  相似文献   

17.
罗鹏  李擎  董禄 《科学技术与工程》2022,22(17):7056-7063
为提高无人车辆轨迹控制的精度,提出了一种基于预瞄误差建模和优化模糊分数阶PID控制的车辆路径跟踪方法。根据车辆动力学特性,引入预瞄横向误差模型,以预瞄横向误差为输入,车辆前轮转角为输出,调整转角角度减小偏差实现轨迹跟踪,设计模糊分数阶PID跟踪控制器。该控制器在PID的基础上结合分数阶理论,同时利用粒子群算法优化的模糊控制器对参数进行在线调整。在CarSim/Simulink联合仿真平台进行仿真研究。研究结果表明,本文所设计的控制器可行有效,为轨迹控制的研究提供了参考。  相似文献   

18.
研究了FROG-LEG型机械手的轨迹跟踪控制问题,提出将基于动力学的预测控制应用于机械手的位置控制,并利用当前时刻控制误差补偿下一周期的控制量。在分析FROG-LEG型机械手结构的基础上,首先建立了机械手的等效串联结构运动学模型,然后建立了水平和垂直方向解耦的动力学模型,在此基础上对并联机械手进行了基于预测控制的轨迹跟踪研究。仿真实验表明:该预测控制方案可以使得机械手有效地跟踪路径规划器给出的轨迹;关键关节的控制效果可以通过加大其权重得到提高;模型校正可以大大降低控制误差。  相似文献   

19.
设计了一套MINS/GPS组合导航系统实验样机,可实时输出导航位置、速度和姿态信息。以GPS接收机的秒同步脉冲(PPS)与串口通信协议尾字节作为对齐标志,完成MINS与GPS时间同步;利用GPS的速度信息进行车载实验初始方位角对准,并利用横向约束条件标定惯导与车体间的方位安装误差角;设计了基于虚拟噪声的现场最优标定方法。以上措施均有效提高了系统的精度和可靠性。车载实验结果表明,无GPS辅助时,纯惯性导航在120s时刻满足短时间惯性导航精度要求;组合导航定位精度在30min内与GPS相当。  相似文献   

20.
介绍了一种新型的水底地貌智能测绘船的硬件系统组成,将改进的PID算法应用在基于GPS导航的智能测绘船控制系统中.采用位置式PD-PID双模控制算法控制测绘船的航向,同时对船速采用PID和Bang-Bang控制算法相结合的控制策略,通过工程整定法确定PID参数及阈值,利用航向控制和速度控制的配合,使测绘船自动完成预定的测量工作.试验结果证明了控制策略的可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号