首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
轨道随机不平顺与车辆动力响应的相干分析   总被引:7,自引:2,他引:7  
介绍了现场实测的轨道随机不平顺数据和根据轨道不平顺模拟的轨道不平顺随机时域函数 ,作为车辆 -轨道系统动力仿真计算的激扰输入 ,计算轮轨作用力及车辆的各种响应 .利用中国高速低干扰轨道不平顺谱、中国某干线实测轨道不平顺谱和美国六级轨道不平顺谱作为仿真计算的激扰 ,计算了各种速度下的轮轨力和车辆动力响应 ,并进行了比较 .最后通过对轨道不平顺与车辆动力响应的相干性分析 ,得出了轨道随机不平顺影响轮轨作用力和车辆运行品质的最不利波长  相似文献   

2.
开展了行车条件下高速铁路CRTSⅡ型板式无砟轨道-桥梁系统的动力响应现场测试,测试CRH380A-001型列车以285~350km/h时速通过时无砟轨道-32m标准预应力混凝土简支梁的动力响应.通过现场采集与数据分析,得到了钢轨、轨道板、底座板、桥面板的竖横向加速度幅值,桥墩顶纵横向绝对位移.结果表明:结构各层加速度在列车时速达到295km/h左右时,急剧增大,之后顺速降低,出现陡波峰;车致振动加速度响应自钢轨-轨道板-底座板-桥面板,自上至下呈明显的递减趋势,振动衰减较为明显.此外,基于实测的梁体自振频率与阻尼比,分析了梁体动挠度的简化计算方法,计算结果与实测梁体动挠度较接近.实验结果可为改进数值分析模型、验证计算结果提供依据.  相似文献   

3.
轨道不平顺作为车-桥耦合振动的主要激励源,直接影响桥梁及高速列车运行的安全性和舒适性.为研究轨道不平顺中短波分量对列车-简支梁桥耦合系统动力响应的影响规律,以高速铁路32m简支箱梁为例,采用德国高速低干扰轨道不平顺谱生成轨道不平顺样本,建立了列车-轨道-桥梁耦合系统空间动力学分析模型.对比分析了5种不同最短截止波长的轨道不平顺样本对耦合系统振动响应的影响规律.研究结果表明:轨道不平顺样本中1m左右的短波长分量会显著增加轮轨力、轮重减载率、脱轨系数和桥梁跨中加速度,但对桥梁跨中位移、轮轨偏移量和车辆振动加速度的影响较小;1~2m的短波长成分是引起轮重减载率超标的主要因素,减少轨道不平顺中1~2m的短波长分量可以有效提高列车行车安全性指标.  相似文献   

4.
运行速度不断提升是当今高速列车发展的趋势;而车辆系统振动响应随运行速度的变化特征可作为衡量列车设计性能好坏的指标。采用多体动力学软件和有限元方法相结合,建立刚柔耦合的列车动力学模型;其中轨道不平顺激励中的动态不平顺部分采用实车实测数据标定。通过仿真,获得车辆系统在0~50 Hz频率范围内的振动响应随运行速度的变化特征。结果表明,随着运行速度的提高,车辆系统振动响应与平稳性指标呈现非单调的增长趋势。受轨道板长度为周期的动态不平顺激励影响,车辆在低速存在不利运行速度区域。  相似文献   

5.
针对某高速铁路列车在运营速度由200 km/h提升至250 km/h后,部分直线区段出现的车体横向低频晃动现象开展试验研究和仿真分析。首先对比分析提速前、后轨道动态检测数据在晃车区段和未晃车区段的时频特征以及乘坐舒适性,进而研究晃车区段的轮轨接触特性,通过建立车辆-有砟轨道动力相互作用模型,深入分析轮轨廓形、列车运行速度以及轨道平顺状态对高速铁路直线运行晃车问题的影响。研究结果表明:当列车提速至250 km/h后,晃车区段车体横向加速度出现明显周期性波动,振动频率为1.37 Hz,与提速前相比,车体横向加速度振动幅值增加了一倍,舒适性等级接近超限,乘坐舒适性明显降低;与采用CHN60&LMA廓形相比,采用实测轮轨廓形时的轮对蛇形运动加剧,轮对运动向一侧钢轨偏移,直接影响车体横向振动频率;列车运行速度提高后车辆系统响应对轮轨廓形的变化更为敏感,采用实测轮轨廓形,列车运行速度为250 km/h时的车体横向加速度谱峰较运行速度为200 km/h时的增大了1.6倍,较采用CHN60&LMA廓形时的增大了1.5倍;当列车提速至250 km/h后,轨道不平顺振动频率与轮对蛇形运动频...  相似文献   

6.
运行速度不断提升是当今高速列车发展的趋势,而车辆系统振动响应随运行速度的变化特征可作为衡量列车设计性能好坏的指标。本文采用多体动力学软件和有限元方法相结合,建立刚柔耦合的列车动力学模型,其中轨道不平顺激励中的动态不平顺部分采用实车实测数据标定。通过仿真,获得车辆系统在0-50Hz频率范围内的振动响应随运行速度的变化特征。结果表明,随着运行速度的提高,车辆系统振动响应与平稳性指标呈现非单调的增长趋势。受轨道板长度为周期的动态不平顺激励影响,车辆在低速存在不利运行速度区域。  相似文献   

7.
以苏通长江公路大桥为工程背景,针对该桥风致振动响应监测系统实测的一次下击暴流风与桥梁结构振动加速度响应实测数据,对该桥在一次雷暴天气下风速、风向及主梁振动响应进行研究.首先,对桥位处下击暴流实测风速、风向数据进行分析,获得了该桥主梁跨中、桥塔塔顶处下击暴流风的时变平均风与脉动风特性;然后,对下击暴流作用下主梁风致振动加速度响应数据进行分析.结果表明:在下击暴流作用下,该桥主梁与塔顶高度处风速发生了明显突变,持续时间约为10~24 min;主跨跨中主梁外侧边缘处下游、上游侧最大瞬时风速分别为32.4 m/s和27.3 m/s,南、北桥塔塔顶高度处最大瞬时风速分别达60.5 m/s和62.9 m/s.主梁高度处30 s时距湍流度约0.048~0.32,10 min时距湍流度约0.43~0.51;主梁下游与北塔处折减脉动风速符合高斯特性,其功率谱与Burlando等学者的实测结果吻合较好.主梁跨中附近(即NJ26D、NJ32D拉索锚固处)发生了较为明显的短时竖向与横桥向振动,相应加速度响应幅值分别为0.25 m/s2和0.10 m/s2,对应位移幅值分别为0.12 m与0.03 m;主梁竖向振动响应明显大于横桥向振动响应,主梁竖向振动主频为0.183 Hz,与主梁全桥一阶正对称竖弯振型频率0.174 Hz接近;横桥向振动主频为0.117 Hz,与主梁全桥一阶正对称侧弯振型频率0.0975 Hz接近.  相似文献   

8.
为探究双层六线铁路列车-桥梁系统耦合振动的空间效应,通过数值方法实现了车桥耦合振动的仿真计算,确定了空间影响规律及全桥最不利杆件位置,并应用于疲劳损伤评估.结合实际列车开行频率建立车桥系统仿真模型,获取桥梁变幅应力时程,并基于Miner线性损伤累积理论与S-N曲线进行疲劳损伤分析.结果表明:空间行车工况下车桥动力响应满足规范要求;相较于平面行车,空间行车时车辆动力响应增大,且动车组比货物列车增幅更明显,动车组安全性指标的空间-偏载系数达到3.808;空间行车对桥梁的横向位移影响严重,影响系数达到1.546;空间行车时桥梁各关键杆件的疲劳损伤指数出现不同程度的增幅,最高可达48.21%;桥梁服役期间主桁最不利杆件连接细节处疲劳损伤度为0.509.  相似文献   

9.
列车随机激励下铁路站房结构振动响应分析   总被引:1,自引:0,他引:1  
列车激励模拟是铁路站房结构振动响应分析首先要解决的问题,目前站房结构振动响应分析中列车激励时程多采用简单列车模型或典型频率谐载组合进行模拟.根据车辆随机振动理论,考虑完整的轨道不平顺谱和轮对间轨道输入相关性,模拟得到基于二系悬挂10自由度列车模型的列车随机激励时程,通过与现有实测数据及模拟时程对比,验证了所得激励时程时频域内的合理性.进行列车随机激励下天津西站大跨度站房结构振动响应分析,研究结构各层振动响应的频谱特性及RMS评价,结果表明:候车厅层振动卓越频率位于人体对竖向振动的最敏感频率范围内,应注意其对人体舒适度的影响.  相似文献   

10.
为了深入研究大跨度多塔悬索桥的动力特性,基于ANSYS软件建立了某大跨度四塔悬索桥的三维有限元模型,采用Block Lanczos法进行模态分析,以获得该桥的自振频率和振型,并分析了主缆矢跨比、恒载集度、主梁刚度以及中塔刚度等结构关键参数对其动力特性的影响.结果表明:该桥基频为0.071 71 Hz,对应振型为主梁一阶正对称侧弯;增大矢跨比有利于提高大桥颤振性能;随着恒载集度的增加,结构各阶自振频率均有不同程度的下降;增大主梁横向和扭转刚度可分别提高主梁侧弯和扭转频率,而增大主梁竖弯刚度对主梁竖弯频率影响较小;主梁一阶竖弯频率随着中塔纵向刚度的增大而显著提高.研究结果可为大跨度多塔悬索桥的结构设计与动力分析提供参考.  相似文献   

11.
为了研究铅芯橡胶双向隔震铁路桥梁在列车荷载作用下的动力性能,本文首先建立一座三跨隔震桥梁三维模型,然后对双向隔震铁路桥梁和列车组成的车桥系统耦合振动进行分析,研究其机理.结果表明,隔震桥梁在横桥向的隔震周期越大,桥梁梁体在列车荷载作用下横桥向位移越大,支座阻尼对桥梁梁体横桥向水平振动的衰减作用更加明显,对桥梁上部结构扭转角和竖向位移的影响可以忽略不计.桥梁横桥向的隔震周期的增大,使车体横摆、侧滚振动位移响应更加剧烈,对车体各个自由度的加速度响应影响可以忽略不计;隔震支座阻尼的增大对车体横摆、侧滚角、摇头角、沉浮和点头角位移响应以及对车体各自由度的加速度响应影响较小.  相似文献   

12.
为分析不同列车速度对大跨度矮塔斜拉桥的动力响应,以新建福厦客专雷公山特大桥为背景,基于midas civil建立该桥的有限元模型.根据中国高速铁路客车机车CRH380A的相关参数,利用移动荷载时程分析模拟列车过桥时的荷载.分析不同工况下主梁以及桥塔,斜拉索应力的动力响应.结果表明:车辆行驶方式和车速对桥梁动力响应有较大...  相似文献   

13.
以大连星海湾跨海大桥主桥(跨径为460m)的悬索桥为工程背景,从理论和试验两方面研究了其动力性能.根据相似原理制作了1∶50缩尺比的模型试验,获得了其竖弯、横弯的频率,并利用有限元软件MIDAS建立了三维模型,对全桥进行了数值分析.通过试验和数值分析可以得出竖弯及横弯的校核系数均较为理想,表明双梁式计算模型可以应用到这种体系的动力分析计算中,以及实桥所采用的有限位移理论分析其动力特性,并进行抗风、抗震等设计是可靠的.  相似文献   

14.
张福才 《科技信息》2008,(22):93-94
桥梁结构的动力特性(固有频率和振型)是结构动力分析和抗震分析的重要参数。以东莞水道特大桥(主桥)为研究对象,通过建立空间结构模型,计算分析了钢管混凝土拱桥的动力特性,为该类桥梁的抗震设计研究提供了分析的基础。计算结果表明:该种桥型横向刚度较竖向刚度弱,桥梁低阶以拱肋横向振动为主。  相似文献   

15.
为了研究车辆-大跨度连续刚构桥竖向振动特性,根据蠕滑理论并结合Matlab软件快速求出轮轨力,将模拟的轮轨力输入到用Midas建立的桥梁有限元分析模型中,求解出桥梁的竖向振动响应.仿真结果表明,采用于Matlab-Midas模型求解车桥系统竖向振动特性的方法具有较高的可行性和便捷性.以某大跨度连续刚构桥为例,选取和谐号CRH1,CRH2,CRH3,CH4型电力动车组,分析了4种不同型号电力动力车组的竖向动力响应,结果显示CRH4型的竖向位移动力响应大于其他3种类型,但是4种车型总的变化趋势一致.  相似文献   

16.
以独塔单索面混凝土斜拉桥为研究对象,通过建立有限元模型,对其进行动力特性分析,并给出该桥的前10阶频率和振型。在此基础上,研究了质量变化、主梁竖向刚度、主梁横向刚度、塔柱刚度、斜拉索参数单一变化对结构动力特性的影响,并对其影响规律进行了分析,研究结果为同类桥的动力研究提供参考。  相似文献   

17.
以一座典型装配式混凝土简支梁桥为工程背景,采用数值分析方法开展斜交角、跨径、桥面宽度和横向扭转刚度对斜梁桥基频的影响分析.结果表明:随着斜交角增长,桥梁前三阶竖向振型对应频率增大;随斜梁桥跨径增大,结构整体竖向刚度降低,基频明显减小,减小速率趋缓;受斜梁桥弯扭耦合力学特征影响,基频随截面抗扭刚度增加显著提高.依据各关键参数对斜梁桥基频的影响分析结果,在现行规范桥梁基频估算公式的基础上,提出考虑截面抗扭刚度和斜交角的混凝土简支斜梁桥基频估算改进公式.通过多座实桥试验数据验证改进公式的精度和适用性.  相似文献   

18.
采用改进的车-桥耦合系统迭代计算模型,建立了基于虚拟激励法(PEM)的列车-轨道-桥梁竖向随机振动分析模型.采用虚拟激励法将轨道不平顺精确地转化为一系列竖向简谐不平顺的叠加,并运用分离迭代法求解车-桥耦合系统振动方程.以CRH2高速列车通过5跨简支梁桥为例,对改进的车-桥耦合系统迭代计算模型的计算精度和效率进行了验证.结果表明:在保持与传统模型相同计算精度的前提下,改进模型能使计算效率提高5倍左右.通过对列车-轨道-简支梁桥竖向随机振动响应中确定性激励引起的均值和轨道不平顺引起的均方根进行分析可知:桥梁竖向位移主要受列车自重控制,轨道不平顺引起的桥梁竖向位移影响很小;桥梁和车体竖向加速度受轨道不平顺影响显著,改善线路条件能有效提高列车的乘车舒适性;同时,车速越高,桥梁和车辆随机响应的均方根越大,由轨道不平顺引起的耦合系统振动响应的离散度越大.  相似文献   

19.
改良土填筑过渡段基床底层的动力特性分析   总被引:1,自引:0,他引:1  
通过动三轴试验及拟合参数法获得软岩改良土的动强度,以允许动强度为标准,评判软岩改良土可以作为基床底层以及路堤本体填料.同时,基于D'Alembert原理的能量弱变分和整体Lagrange格式,建立路桥过渡段半空间垂向耦合的动力计算模犁,进一步分析不同列车速度下路桥过渡段的动态响应特征,并通过现场实测数据对比验证模型的正确性.研究结果表明:在列车荷载下,竖向动位移幅值波动范围为0.05-0.35 mm,小于控制值;弹性应变幅值小于3×10~(-5),处于小变形阶段;竖向动应力幅值波动范围为15.5~19.5 kPa,远小于改良土的动强度;采用刚性过渡较合理,掺入5%水泥的改良土可用于其基床底层及路基本体的填筑.  相似文献   

20.
为研究三塔缆索承重桥中塔刚度的合理取值,本文以马鞍山长江公路大桥和武汉二七长江大桥为例,探究中塔纵桥向弯曲刚度、横桥向弯曲刚度和扭转刚度与三塔悬索桥和三塔斜拉桥的动力特性的关系。研究表明:三塔缆索承重桥某些振型的频率受中塔刚度变化影响较大,并表现为振型频率随刚度放大而迅速增大,然后增大的趋势逐渐放缓,直到趋于稳定值。例如,三塔悬索桥中塔纵桥向弯曲刚度放大5倍时一阶反对称竖弯频率增大37.2%,而100倍时增大为38.0%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号