首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
<正>By means of monthly mean NCEP/NCAR data analyses, this note investigates the lag influences of winter circulation conditions in the tropical western Pacific on South Asian summer monsoon through the methods of composite, correlation and statistical confident test. The results indicate clearly that winter climate variations in the equatorial western Pacific would produce significant influences on the following South Asian summer monsoon, and with the lapse of time the lag influences show clearly moving northward and extending westward features. When winter positive (negative) sea level pressure anomalies occupy the equatorial western Pacific, there is an anticyclonic (cyclonic) circulation anomaly appearing in the northwestern Pacific. With the lapse of time, the anticyclonic (cyclonic) circulation anomaly gradually moves to northeast, and its axis in the west-east directions also stretches, therefore, easterly (westerly) anomalies in the south part of the anticyclonic (cyclonic) circulation anomaly continuously expand westward to the peninsula of India. Undoubtedly, the South Asian summer monsoon is weak (strong).  相似文献   

2.
利用1950-2000年大气视水汽汇资料,分析了亚澳季风区内水汽汇准两年振荡的变化特征及其与大气环流的关系.亚澳季风区内水汽汇有显著的准两年振荡,其关键区位于西太平洋暖池、孟加拉湾、东南印度洋和西南印度洋,它们对应3种遥相关型.当暖池水汽汇偏强时,我国华南为偏北风距平,东亚季风区水汽汇偏弱;印度洋水汽汇距平呈现为偶极子分布,东南印度洋附近水汽汇偏强时,东南印度洋至赤道西印度洋为偏西风距平,赤道西印度洋水汽汇偏弱;孟加拉湾水汽汇偏强时,孟加拉湾至西南印度洋为偏南风距平,西南印度洋的水汽汇偏弱.反之亦然.  相似文献   

3.
Based on the observational data analyses and numerical simulations with the air-sea coupled model (CGCM), a new perspective on the occurrence mechanism of ENSO is advanced in this paper. The continuous strong (weak) East Asian winter monsoon will lead to continuous westerly (easterly) wind anomalies over the equatorial western Pacific region. The anomalous equatorial westerly (easterly) winds can cause eastward propagation of the subsurface ocean temperature anomalies (SOTA) in the warm pool region, the positive (negative) SOTA have been in the warm pool region for quite a long time. The eastward propagating of positive (negative) SOTA along the thermocline will lead to positive (negative) SSTA in the equatorial eastern Pacific and the occurrence of El Niño (La Niña) event. After the occurrence of ENSO, the winter monsoon in East Asia will be weak (strong) due to the influence of El Niño (La Niña).  相似文献   

4.
The relationship between the anomalous East Asian winter monsoon (EAWM) activity and the tropical Pacific SST anomalies has been identified using the results of 40-year integration of the IAP CGCM1 model and 10-year observational data. In the strong EAWM year, the western and central Pacific are dominated by positive SST anomalies while the eastern Pacific is negative ones. In the weak EAWM year, the SSTA pattern is quite different and shows El Nino-like SST anomalies. The strong EAWM activity tends to create extra easterly flow to the east and extra westerly flow to the west of the warm SSTA region over the equatorial western and central Pacific, thus leading to the enhancement of convergence and convection of the flow in this region and favorable to the maintenance and development of such an SSTA pattern. On the other hand, the warm SST anomaly over the western and central Pacific, as a forcing, may lead to a specific pattern of the northern extratropical atmosphere, which is favorable to the strong EAWM activity. The tropical Pacific SSTA pattern related closely to the strong EAWM activity differs significantly from that of the La Nina year.  相似文献   

5.
The relationships between the evolution of two types of El Ni?o events and the subsurface ocean temperature anomaly(SOTA) in the equatorial Pacific are compared in this study. The results show that both types of El Ni?o are negatively correlated to the SOTA in the equatorial western Pacific, but relationships are different in different phases of El Ni?o. Furthermore, the occurrence of different types of El Ni?o is related to different features of the equatorial thermocline, e.g. its zonal gradient, significant variation area, amplitude and duration of thermocline oscillation. The propagation of SOTA in the equator plays an important role during the evolution of both types of El Ni?o, but shows dramatic differences in intensity, duration and phase reverse of warm SOTA. Moreover, the pathways of SOTA signal are different between these two types of El Ni?o. The dominant pathway in the life cycle of Eastern Pacific(EP)-El Ni?o lies on the equator and to its north, but there is no loop to the south of the equator. In contrast, the dominant pathway in Central Pacific(CP)-El Ni?o is located on the equator and to its south, and the propagation signal of SOTA to the north of the equator is very weak.The relationships between the zonal wind anomalies and the two types of El Ni?o are also preliminarily discussed. It is shown that EP-El Ni?o is more likely to respond to the westerly anomalies over the equatorial central and western Pacific, while CP-El Ni?o is more likely to respond to the westerly anomalies over the equatorial western Pacific and need the cooperation of easterly anomalies over the equatorial eastern Pacific to certain extent.  相似文献   

6.
The relationship between sea surface temperature (SST) east of Australia and tropical cyclone frequency over the western North Pacific (WNPTCF) is analyzed by use of observation data.The WNPTCF from June to October is correlated negatively to spring SST east of Australia.When the spring SST is in the positive phase,a cyclonic circulation anomaly in the upper troposphere and an anticyclonic circulation anomaly in the lower troposphere prevail over the western North Pacific from June to October,concurrent with an anomalous atmospheric subsidence and an enlarged vertical zonal wind shear.These conditions are unfavorable for tropical cyclone genesis,and thus WNPTCF decreases.The negative phase of the spring SST east of Australia leads to more tropical cyclones over the western North Pacific.The spring SST east of Australia may give rise to simultaneous change in tropical atmospheric circulation via the teleconnection wave train,and then subsequently affect atmospheric circulation variation over the western North Pacific.  相似文献   

7.
Using 1961—1995 monthly atmospheric apparent heat source/sink <Q1> over the Qinghai-Xizang Plateau (QXP) and reanalysis data of NCEP/NCAR, and 1961—1994 monthly SST of UK/GISST2, the statistical study is undertaken on the QXP heat source/sink in relation to both atmospheric circulation in Asia and El Niño/La Niña events. It is discovered that there exists noticeable interaction in a quasi-4-year period among the <Q1> of the QXP, low-level meridional winds east of the QXP, low-level zonal winds in the equatorial Pacific, SST in the equatorial eastern Pacific, and the circulation at mid and high latitudes north of the QXP. They have difference in phase. The cold source intensity of the QXP in winter favours a low-level meridional wind anomaly to prevail in the mainland of China and its coast east of the QXP and to last until the subsequent autumn. The wind anomaly can induce a low-level zonal wind anomaly of the tropic Pacific that finally affects an El Niño/La Niña event in the autumn and subsequent winter. The event in autumn/winter has effect on the deep trough position and cold air track of East Asia in next winter that influences the intensity of the QXP winter cold source.  相似文献   

8.
用OSU的两层大气环流模式进行了热带西太平洋冬春海温异常对东亚初夏(5月)季风环流影响的数值试验.结果表明:①海温的负距平引起西太平洋副热带高压脊南落和西伸,东亚热带季风环流减弱,我国西南和华南地区的降水增加;②海温的正距平引起西太平洋副热带高压明显减弱,西太平洋的赤道西风加强,我国西南和华南地区的降水减少  相似文献   

9.
The relationships between the evolution of two types of E1 Nifio events and the subsurface ocean temperature anomaly (SOTA) in the equatorial Pacific are compared in this study. The results show that both types of E1 Nifio are negatively correlated to the SOTA in the equatorial western Pacific, but relationships are different in different phases of E1 Nifio. Furthermore, the occurrence of different types of E1 Nifio is related to different features of the equatorial thermocline, e.g. its zonal gradient, significant variation area, amplitude and duration of thermocline oscillation. The propagation of SOTA in the equator plays an important role during the evolution of both types of E1 Nifio, but shows dramatic differences in intensity, duration and phase reverse of warm SOTA. Moreover, the pathways of SOTA signal are different between these two types of E1 Nifio. The dominant pathway in the life cycle of Eastern Pacific (EP)-E1 Nifio lies on the equator and to its north, but there is no loop to the south of the equator. In contrast, the dominant pathway in Central Pacific (CP)-E1 Nifio is located on the equator and to its south, and the propagation signal of SOTA to the north of the equator is very weak. The relationships between the zonal wind anomalies and the two types of E1 Nifio are also preliminarily discussed. It is shown that EP-E1 Nifio is more likely to respond to the westerly anomalies over the equatorial central and western Pacific, while CP-E1 Nifio is more likely to respond to the westerly anomalies over the equatorial western Pacific and need the cooperation of easterly anomalies over the equa- torial eastern Pacific to certain extent.  相似文献   

10.
为了研究青藏高原积雪异常对亚洲夏季风气候的影响,从季风环流和季风降水等方面综合分析了高原积雪异常对气候的影响,并利用IAP 9L AGCM模式,对高原雪量进行了增加和减少的数值试验。从而提出高原多(少)雪年南亚夏季风偏弱(强),东亚夏季风反而偏强(弱)的新观点。高原积雪异常会导致高原上空大气垂直运动的扰动,扰动传播到下游致使我国长江流域和西太副高所在区域大气对流运动发生变化。高原多(少)雪,夏季我国南方的偏南风增强(减弱),有利于水汽从孟加拉湾和南海向我国大陆输送,但到长江流域时,由于偏南风存在较强(弱)的辐合,江淮流域偏涝(旱)。  相似文献   

11.
利用华北地区实测的月降水量资料,美国NCAR/NCEP 850 hPa的矢量风5、00 hPa和850 hPa的位势高度等再分析资料,分析了华北地区1972年和1997年这2个干旱年干旱的空间分布、强度分布和持续时间,以及西太平洋副热带高压变化、季风进退和欧亚大气环流异常情况.结果表明:1972年是季风正常年,但该年亚洲大陆高压偏强且持续存在、西太平洋副热带高压持续偏弱,导致了干旱的发生与持续;而1997年由于持续偏强的亚洲大陆高压、持续偏弱的季风和西太平洋副热带高压造成该地区严重干旱.  相似文献   

12.
利用1979—2018年冬季(12月—次年2月)地面台站的逐日风速和ERA-Interim再分析资料,分析了冬季京津冀区域性大风的变化及其天气环流型. 结果显示,在1979—2018年期间,共计出现区域性大风事件285 d,近40 a大风天气出现的频次以?0.96 d·(10 a)?1(P<0.05)趋势减少. 层次聚类结果显示,导致区域性大风的主要天气环流型有2类:一类环流型事件为110 d,突出特征是欧亚大陆中高纬地区500 hPa位势高度场异常,沿西北–东南方向呈“负-正-负-正-负”分布,合成分析表明其异常信号从上游地区出现、东移、消失于西北太平洋地区,可持续近15 d;另一类环流型事件有175 d,对应的欧亚大陆地区环流异常自西向东呈“正-负-正-负-正”分布,异常信号可持续近18 d. 合成显示,京津冀地区2类天气环流型在对流层中低层均为低压异常,同时近地面有异常强的偏北风和低温. 1979年以来,这2类天气环流型的频次都在显著减少,前者的线性趋势是?0.72 d·(10 a)?1 (P<0.01),后者趋势是?0.23 d·(10 a)?1 (P<0.5),这说明第一类天气型频次的减少可能是近40 a京津冀地区大风事件下降的主要原因.   相似文献   

13.
1 Introduction Variability of the East Asian summer monsoon (EASM) has been detected by considering roles of El Nino and Southern Oscillation (ENSO) cycle, snow cover over Eurasia and Tibetan Plateau, and signals from the soil (namely, the soil temperatur…  相似文献   

14.
There is the significant period of tropospheric biennial Oscillation(TBO)over East Asian monsoon region at the interannual timescales,which has the important influences on East China climate.Based on a set of reconstructed indices which describes the western Pacific subtropical high(WPSH)objectively,this paper focuses on the TBO component of WPSH,one of the key members of the East Asian Monsoon system,and its relationships with the tropical SST and atmospheric circulation anomalies.It is found that(1)As an important interannual component of WPSH,the time series of TBO has the obvious transition in the late1970s,and the variability of the WPSH’s TBO component is more significant after the late 1970s.(2)The time-lag correlations between the WPSH’s TBO and the tropical sea surface temperature(SST)anomalies in several key ocean regions are more significant and have longer correlation duration than the raw data.The response of the western boundary index to ENSO is earlier than the intensity index,and the time-lag correlations of them are up to maximum when lagging ENSO by 3–5 months and 5–6months,respectively.(3)In the course of the WPSH’s TBO cycle,the occurrence of the El Ni o-like anomaly in the tropical central-eastern Pacific in winter is always coupled with the weak East Asian winter monsoon,with the most significant enhancing phase of the WPSH’TBO.In contrast,the La Ni a-like anomaly in the central-eastern Pacific in winter is coupled with the strong East Asian winter monsoon,with the most weakening phase of the WPSH’s TBO.(4)The distribution of the tropical SST and atmospheric circulations anomalies are asymmetric in the TBO cycle.The WPSH’s TBO is more significant in the period of the developing El Ni o-like anomaly in central-eastern Pacific than in the period of the developing La Ni a-like anomaly.Therefore,during the period of developing El Ni o-like anomaly,more attention should be paid to the interannual component of TBO signal in the short-term climate prediction.  相似文献   

15.
Relationship between the Antarctic oscillation (AAO) and the western North Pacific typhoon number (WNPTN) in the interannual variability is examined in this research. The WNPTN is correlated with the AAO in June-July-August-September (JJAS) in 1949-1998 at -0.48 for the detrended time series, statistically significant at 99% level. The tropical atmospheric circulation as well as the sea surface temperature variability over the western Pacific associated with AAO has been analyzed. It follows that a positive phase of JJAS AAO corresponds to the larger magnitude of the vertical zonal wind shear, the anomalous low-lever anticyclonic circulation and anomalous high-level cyclonic circulation, and lower sea surface temperature in the major typhoon genesis region in the western North Pacific, thus providing unfavorable environment for the typhoon genesis, and vice versa.  相似文献   

16.
利用2005年1月至2017年12月搭载在美国环境监测Aura卫星上的臭氧监测仪(Ozone Monitoring Instrument, OMI)数据和NCEP气象资料,在夏季风环流指数定义方法的基础上,重新定义了南亚区域冬季风环流指数,并分别计算了南亚夏季风和冬季风环流指数. 结合冬夏两季环流的强弱变化采用相关分析、合成分析和奇异值分解(Singular Value Decomposition, SVD)等方法,探讨了环流异常形势下臭氧的时空变化特征. 结果表明:①南亚夏季纬向环流与经向环流的强度变化存在一致性,冬季经向环流与纬向环流的强度变化差异较大. ②南亚臭氧柱总量的季节变化明显,且近13年来臭氧柱总量整体呈上升趋势. ③夏季(冬季)风环流指数与对流层中低(中高)层和平流层中低层臭氧的相关性显著,但夏季平流层和对流层的相关趋势相反. ④夏季风环流增强对应青藏高原?伊朗高原上空及南侧区域的上升运动增强,对臭氧的输送作用是造成对流层臭氧分布呈现差异的原因. ⑤冬季风环流强弱期的垂直上升和下沉运动中心的移动,以及南北向、东西向气流交汇区的差异是造成臭氧分布不同的原因.  相似文献   

17.
对1951-1999年中国夏季江淮流域降水异常与海温异常关系的分析表明,前期及同期各季节三大洋海表温度异常(SSTA)与长江流域降水异常的关系是非常显著的,而对淮河流域降水异常总体上的影响较小,前期冬季SSTA的影响显著区主要有:热带印度洋、黑潮、热带中东太平洋和大西洋,各关键区海温异常对亚洲夏季风的影响特征为:当前期冬季赤道印度洋、黑潮、赤道大西洋和热带东太平洋海表温度异常升高(降低),当年夏季印度西南季风和东亚热带辐合带减弱(加强),副热带高压位置偏南(北),副热带辐合带加强(减弱),长江流域易发生洪涝(干旱),相关显著性分析表明,前冬赤道印度洋和黑潮区的海温异常对中国夏季降水的影响更为显著。  相似文献   

18.
南海夏季风强弱年东亚地表热力异常特征的合成研究   总被引:1,自引:0,他引:1  
 利用NCAR/NCEP1948年1月-2002年12月共55 a 660个月的地表感热通量和地表潜热通量以及其它气象场的月平均再分析资料,计算了期间5-6月平均的南海夏季风湿位涡强度指数。由标准化的湿位涡强度指数距平的年际变化曲线,选择距平值大于0.5的年份为季风爆发的强年,距平值小于-0.5的年份为季风爆发的弱年,对强、弱年东亚及其周边地区的地表潜热通量(LHF)距平、地表感热通量(SHF)距平以及海平面气压(SLP)距平的分布特征进行了合成分析。结果表明,在南海夏季风爆发强年和弱年,其前期冬春季的地表潜热通量、感热通量以及海平面气压场的距平分布有很大不同,前冬的差别更为明显。冬季,LHF和SHF在强、弱年的主要差异在海洋上和近海地区,尤其是西太平洋沿岸,合成距平呈现沿海岸线的东北-西南向的带状分布,强年沿岸为正距平,弱年为负距平。LHF和SHF标准化距平叠加之和有同样的区域分布特征。这种强、弱年的距平分布差异,与低层风场在强、弱年的不同有密切关系,强年东亚冬季风偏强,弱年则反之。强、弱年SLP在前冬的距平差异,验证了上述结论。  相似文献   

19.
Forty-two climate models participating in the Coupled Model Intercomparison Project Phases 3 and 5 were first evaluated in terms of their ability to simulate the present climatology of the East Asian winter (December-February) and summer (June-August) monsoons. The East Asian winter and summer monsoon changes over the 21st century were then projected using the results of 31 and 29 reliable climate models under the Special Report on Emissions Scenarios (SRES) mid-range A1B scenario or the Representative Concentration Pathways (RCP) mid-low-range RCP4.5 scenario, respectively. Results showed that the East Asian winter monsoon changes little over time as a whole relative to the reference period 1980-1999. Regionally, it weakens (strengthens) north (south) of about 25°N in East Asia, which results from atmospheric circulation changes over the western North Pacific and Northeast Asia owing to the weakening and northward shift of the Aleutian Low, and from decreased north- west-southeast thermal and sea level pressure differences across Northeast Asia. In summer, monsoon strengthens slightly in East China over the 21st century as a consequence of an increased land-sea thermal contrast between the East Asian continent and the adjacent western North Pacific and South China Sea.  相似文献   

20.
Historical La Nia events since 1950 are divided into Eastern Pacific(EP) type and Central Pacific(CP) type,and the SSTA developing features as well as the different responses of the tropical atmosphere are further analyzed by using multiple datasets.Classification of different types La Nia is based on the normalized Ni o3 and Ni o4 indices and the SSTA distribution pattern during the mature phase.The minimum negative SSTA for CP La Nia is located over the equatorial central Pacific near the dateline,more westward than that of EP La Nia.It has stronger intensity and larger east-west zonal difference of SSTA over the equatorial Pacific than EP La Nia.Influenced by the different SSTA distribution pattern,CP La Nia induces more westward location of the anomalous sinking motion and the anomalous low-level divergent and high-level convergent winds over the equatorial eastern Pacific.The different response of the tropical atmospheric circulation between EP and CP La Nia is more significant in the upper troposphere than in the lower troposphere.However,the tropical precipitation patterns during the mature phase of EP and CP La Nia are much similar,except the less(more) precipitation over the equatorial central Pacific(eastern Indian Ocean-western Pacific) during CP La Nia than during EP La Nia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号