首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LU Riyu 《科学通报(英文版)》2005,50(18):2069-2073
The rainfall in North China during rainy season (July and August (JA)) exhibits a strong interannual variability. In this study, the atmospheric circulation and SST anomalies associated with the interannual variation of JA North China rainfall are examined. It is found that on the interannual timescale, the JA North China rainfall is associated with significant SST anomalies in the equatorial eastern Pacific, and the North China rainfall and SST anomaly in the equatorial eastern Pacific correspond to the similar variation of the upper-level westerly jet stream over East Asia. A possible mechanism is proposed for the influence of the SST anomalies in the equatorial eastern Pacific on the North China rainfall.  相似文献   

2.
Abstract Zonal wind anomaly over the equatorial western Pacific plays an important role in the occurrence of ENSO. The mechanism to produce zonal wind anomaly over the equatorial western Pacific is studied in this paper. It is shown clearly that zonal wind anomaly over the equatorial western Pacific is closely related to the anomaly of EastAsian winter monsoon. Anomalous strong (weak) East-Asian winter monsoon can excite not only the westerly (easterly)anomaly over the equatorial western Pacific but also a cyclonic (an anticyclonic) circulation over the east of the Philippines. The above anomalous circulation results from dynamical impacts of anomalous pressure pattern due to the East-Asian winter monsoon. Because there is westward (eastward) pressure gradient over the equatorial western Pacific, i.e. there is αp/αx 〈 0 (〉 0), during strong (weak) East-Asian winter monsoon.  相似文献   

3.
Relationship between the Antarctic oscillation (AAO) and the western North Pacific typhoon number (WNPTN) in the interannual variability is examined in this research. The WNPTN is correlated with the AAO in June-July-August-September (JJAS) in 1949-1998 at -0.48 for the detrended time series, statistically significant at 99% level. The tropical atmospheric circulation as well as the sea surface temperature variability over the western Pacific associated with AAO has been analyzed. It follows that a positive phase of JJAS AAO corresponds to the larger magnitude of the vertical zonal wind shear, the anomalous low-lever anticyclonic circulation and anomalous high-level cyclonic circulation, and lower sea surface temperature in the major typhoon genesis region in the western North Pacific, thus providing unfavorable environment for the typhoon genesis, and vice versa.  相似文献   

4.
The interannual-to-interdecadal relationship between the Pacific sea surface temperature (SST) and the northern hemispheric midlatitude's atmosphere represented by the circumpolar vortex was documented with the global oceanic and atmospheric reanalysis data of recent 50 years. Two covarying modes of the Pacific SST and northern circumpolar vortex anomalies during winter were examined using the singular value decomposition and wavelet analysis techniques. One is the interannual, ENSO-related mode and the other is the interdecadal, North Pacific SST-related mode with a period of around 20 years. The two modes exhibit distinct spatial structures. For the interannual mode, the SST anomaly is characterized by a typical ENSO pattern with the principal signature in the tropical eastern Pacific and secondary one in the central North Pacific, while the atmospheric anomaly is regional, characterized by a Pacific-North American pattern. For the inter- decadal mode, large SST anomaly is located in the central North Pacific, while the atmospheric anomaly is zonally global, associated with the midlatitute's standing long-wave variations. When the central North Pacific is colder, the long-wave is stronger, and vice versa. Further investigations suggest that the interdecadal mode could involve an interaction between "two oceans and an atmosphere".  相似文献   

5.
A common problem in the application of the coupled ocean-atmosphere general circulation models (CGCMs) without flux correction is that the simulated equatorial cold tongue in general tends to be too strong, narrow, and extending too far west. The causes are not well understood yet. One possible reason may be the simulated mixed layer depth (MLD) is too shallow in the tropical Pacific due to insufficient vertical mixing in the OGCM. It is believed that the wave-induced vertical mixing can greatly improve the simulation of the MLD and thermocline structure. In this study, the coupled ocean-atmosphere general circulation model (FGCM-0) incorporated with wave-induced mixing has been employed to simulate the tropical Pacific sea surface temperature (SST). Generally, the wave-induced mixing lowers the SST in the OGCM because the strengthened vertical mixing can bring more cold water upward. However, in the coupled model, the non-uniformity of the space distribution in SST drop generates a horizontal gradient of the sea surface air pressure, and thus yields surface wind field anomaly. The wind anomaly leads to both ocean surface circulation anomaly and downwelling anomaly, which can restrain the overly-westward extension of the cold tongue in the tropical Pacific. Compared with the model results from the original model (FGCM-0), the modeled SST is higher by more than 0.8℃, with a maximum of 1.2℃ in the western Pacific (160—180°E, 0—3°N). The eastern boundary of the isotherm of 26.0℃ also moves from 165°E to 180°E. The overly westward extension of the simulated equatorial cold tongue is suppressed with the incorporation of the wave-induced mixing in the coupled model. The simulated SST shows in general improved results with a maximum improvement of more than 1.0℃. The simulated SST improvement in the north tropical Pacific is much better than that of the south tropical Pacific.  相似文献   

6.
A common problem in the application of the coupled ocean-atmosphere general circulation models (CGCMs) without flux correction is that the simulated equatorial cold tongue in general tends to be too strong, narrow, and extending too far west. The causes are not well understood yet. One possible reason may be the simulated mixed layer depth (MLD) is too shallow in the tropical Pacific due to insufficient vertical mixing in the OGCM. It is believed that the wave-induced vertical mixing can greatly improve the simulation of the MLD and thermocline structure. In this study, the coupled ocean-atmosphere general circulation model (FGCM-0) incorporated with wave-induced mixing has been employed to simulate the tropical Pacific sea surface temperature (SST). Generally, the wave-induced mixing lowers the SST in the OGCM because the strengthened vertical mixing can bring more cold water upward. However, in the coupled model, the non-uniformity of the space distribution in SST drop generates a horizontal gradient of the sea surface air pressure, and thus yields surface wind field anomaly. The wind anomaly leads to both ocean surface circulation anomaly and downwelling anomaly, which can restrain the overly-westward extension of the cold tongue in the tropical Pacific. Compared with the model results from the original model (FGCM-0), the modeled SST is higher by more than 0.8℃, with a maximum of 1.2℃in the western Pacific (160—180°E, 0—3°N) . The eastern boundary of the isotherm of 26. 0℃also moves from 165°E to 180°E. The overly westward extension of the simulated equatorial cold tongue is suppressed with the incorporation of the wave-induced mixing in the coupled model. The simulated SST shows in general improved results with a maximum improvement of more than 1.0℃. The simulated SST improvement in the north tropical Pacific is much better than that of the south tropical Pacific.  相似文献   

7.
The Asian summer monsoon(ASM) begins firstly over the Indo-China Peninsula in early May and over the South China Sea(SCS) in mid-May.The different monsoon onset dates can exert distinct effects on the summer rainfall in Asia.Statistical results indicate that the Antarctic Oscillation(AAO) in the boreal winter has a significant precursory influence on the ASM onset dates.In stronger AAO years,both the Mascarene high and the Australia high in March are stronger owing to the "see-saw" structure of atmospheric circulation over the subtropics and higher latitudes in the Southern Hemisphere,and the tropical intertropical convergence zone(ITCZ) is deeper.Thus,the pressure gradient between the subtropical and tropical regions increases in spring.As a result,the Somalia cross-equatorial flow(SCEF) occurs earlier,strengthens,and enhances the westerlies over the tropical Indian Ocean.The enhanced westerlies impel an eastward withdrawal of the western Pacific subtropical high and intensify the convergence and rising motion at the lower troposphere,accelerating the burst of ASM.Differently,weaker AAO weakens the pressure gradient between the tropical and subtropical regions and delays the establishment of SCEF,resulting in a delayed onset of ASM.This study extends the leading time of seasonal forecast of ASM onset from the previous spring to winter and provides useful information about precursory signals in climate prediction operation.  相似文献   

8.
There is the significant period of tropospheric biennial Oscillation(TBO)over East Asian monsoon region at the interannual timescales,which has the important influences on East China climate.Based on a set of reconstructed indices which describes the western Pacific subtropical high(WPSH)objectively,this paper focuses on the TBO component of WPSH,one of the key members of the East Asian Monsoon system,and its relationships with the tropical SST and atmospheric circulation anomalies.It is found that(1)As an important interannual component of WPSH,the time series of TBO has the obvious transition in the late1970s,and the variability of the WPSH’s TBO component is more significant after the late 1970s.(2)The time-lag correlations between the WPSH’s TBO and the tropical sea surface temperature(SST)anomalies in several key ocean regions are more significant and have longer correlation duration than the raw data.The response of the western boundary index to ENSO is earlier than the intensity index,and the time-lag correlations of them are up to maximum when lagging ENSO by 3–5 months and 5–6months,respectively.(3)In the course of the WPSH’s TBO cycle,the occurrence of the El Ni o-like anomaly in the tropical central-eastern Pacific in winter is always coupled with the weak East Asian winter monsoon,with the most significant enhancing phase of the WPSH’TBO.In contrast,the La Ni a-like anomaly in the central-eastern Pacific in winter is coupled with the strong East Asian winter monsoon,with the most weakening phase of the WPSH’s TBO.(4)The distribution of the tropical SST and atmospheric circulations anomalies are asymmetric in the TBO cycle.The WPSH’s TBO is more significant in the period of the developing El Ni o-like anomaly in central-eastern Pacific than in the period of the developing La Ni a-like anomaly.Therefore,during the period of developing El Ni o-like anomaly,more attention should be paid to the interannual component of TBO signal in the short-term climate prediction.  相似文献   

9.
El Ni駉 is a kind of the disastrous events occurring in the central and eastern parts of tropical Pacific. It pre-sents itself as anomaly of sea surface temperature (SST) in these parts of the tropical Pacific. It is called an El Ni駉 (La Ni馻) event whenever the tropical Pacific SST anom-aly is warmer (cooler) than 0.5℃(- 0.5℃) and lasts for over 6 months[1]. Southern oscillation (SO) is a seesaw- like variation of sea level pressure (SLP) in eastern and western parts of the souther…  相似文献   

10.
<正>By means of monthly mean NCEP/NCAR data analyses, this note investigates the lag influences of winter circulation conditions in the tropical western Pacific on South Asian summer monsoon through the methods of composite, correlation and statistical confident test. The results indicate clearly that winter climate variations in the equatorial western Pacific would produce significant influences on the following South Asian summer monsoon, and with the lapse of time the lag influences show clearly moving northward and extending westward features. When winter positive (negative) sea level pressure anomalies occupy the equatorial western Pacific, there is an anticyclonic (cyclonic) circulation anomaly appearing in the northwestern Pacific. With the lapse of time, the anticyclonic (cyclonic) circulation anomaly gradually moves to northeast, and its axis in the west-east directions also stretches, therefore, easterly (westerly) anomalies in the south part of the anticyclonic (cyclonic) circulation anomaly continuously expand westward to the peninsula of India. Undoubtedly, the South Asian summer monsoon is weak (strong).  相似文献   

11.
The linkage between Hadley circulation (HC) and sea ice extent in the Bering Sea during March-April is investigated through an analysis of observed data in this research. It is found that HC is negatively correlated to the sea ice extent in the Bering Sea, namely, strong (weak) HC is corresponding to less (more) sea ice in the Bering Sea. The present study also addresses the large-scale atmospheric general circulation changes underlying the relationship between HC and sea ice in the Bering Sea. It follows that a positive phase of HC corresponds to westward located Aleutian low, anomalous southerlies over the eastern North Pacific and higher temperature in the Bering Sea, providing unfavorable atmospheric and thermal conditions for the sea ice forming, and thus sea ice extent in the Bering Sea is decreased, and vice versa. In addition, it is further identified that East Asian-North Pacific-North America teleconnection may play an important role in linking HC and changes of atmospheric circulations as well as sea ice in the Bering Sea.  相似文献   

12.
The spring soil moisture and the summer rainfall in eastern China   总被引:7,自引:0,他引:7  
The relation between the soil moisture in spring and the rainfall in summer in eastern China is investi- gated. Results show that the summer rainfall in eastern China is closely related to the spring soil moisture in the area from North China to the lower reaches of Yangtze River (NCYR). When spring soil moisture anomalies over NCYR are positive, the summer precipitation exhibits positive anomalies in Northeast China and the lower reaches of Yangtze River, and negative anomalies in southern China and North China. The higher soil moisture over NCYR cools land surface and reduces the land-sea tem- perature gradient, which weakens East Asian summer monsoon. The western Pacific Subtropical High (WPSH) is located to the south and shifts westward, resulting in more rainfall in the lower reaches of Yangtze River and less in southern China and North China.  相似文献   

13.
The tropical Pacific-Indian Ocean temperature anomaly mode and its effect   总被引:2,自引:0,他引:2  
Temperature anomaly in the Indian Ocean is closely related to that in the Pacific Ocean because of the Walker circulation and the Indonesian throughflow. So only the El Ni?o/Southern Oscillation (ENSO) in the Pacific cannot entirely explain the influence of sea surface temperature anomaly (SSTA) on climate variation. The tropical Pacific-Indian Ocean temperature anomaly mode (PIM) is presented based on the comprehensive research on the pattern and feature of SSTA in both Indian Ocean and Pacific Ocean. The features of PIM and ENSO mode and their influences on the climate in China and the rainfall in India are further compared. For proving the observation results, numerical experiments of the global atmospheric general circulation model are conducted. The results of observation and sensitivity experiments show that presenting PIM and studying its influence are very important for short-range climate prediction.  相似文献   

14.
An interdecadal shift in summer (June―August) sea surface temperature (SST) variations during the period of 1968―2002 was identified in the late 1980s, which is characterized by a phase alternating from negative to positive phases of the leading mode of the empirical orthogonal function (EOF) analysis of the summer monthly mean SST in the Pacific domain 100°―180°E and 0°―40°N, accounting for 30.5% of the total variance. During the period of 1968―1987, the leading mode with a mean negative phase state (mean standard deviation = ?0.586) controlled SST variability in the western North Pacific. Correspondingly, negative SST anomalies occupied the western North Pacific south of Japan and Chinese marginal seas. During the period of 1988―2002, the leading mode shifted to its strong positive polarity (mean standard deviation = 0.781), thus positive SST anomalies appeared in the western North Pacific. Accompanied by the interdecadal shift in summer mean SST, summer mean rainfall increased in southern and southeastern China during the late period, particularly in southeastern China where increase in summer mean rainfall exceeded 40 mm, at the 0.05 significance level.  相似文献   

15.
This paper analyzes the large-scale atmospheric circulation characteristics of anomalous cases of January temperatures that occurred in Northeast China during 1960-2008 and precursory oceanic conditions.The January monthly mean surface air temperature(SAT) anomalies and the duration of low temperature are used to define temperature anomaly cases.The anomalous cyclonic circulation over northeast Asia strengthens the northerly flow in cold Januarys,while the anomalous anticyclonic circulation weakens the northerly flow in the warm Januarys.The negative(positive) North Pacific sea surface temperature anomaly(SSTA) and increased(decreased) sea ice concentration in the Barents-Kara seas in the preceding month are probably linked to the cyclonic(anticyclonic) circulation pattern over northeast Asia in the cold(warm) cases.Further analyses indicate that the preceding oceanic conditions play distinct roles in the SAT anomalies over Northeast China on different time scales.Strong relationships exist between North Pacific SSTA and the SAT in Northeast China on the interannual time scale.On the other hand,the sea ice concentration is more closely associated with the interdecadal variations of SAT in Northeast China.  相似文献   

16.
The relationships between the evolution of two types of E1 Nifio events and the subsurface ocean temperature anomaly (SOTA) in the equatorial Pacific are compared in this study. The results show that both types of E1 Nifio are negatively correlated to the SOTA in the equatorial western Pacific, but relationships are different in different phases of E1 Nifio. Furthermore, the occurrence of different types of E1 Nifio is related to different features of the equatorial thermocline, e.g. its zonal gradient, significant variation area, amplitude and duration of thermocline oscillation. The propagation of SOTA in the equator plays an important role during the evolution of both types of E1 Nifio, but shows dramatic differences in intensity, duration and phase reverse of warm SOTA. Moreover, the pathways of SOTA signal are different between these two types of E1 Nifio. The dominant pathway in the life cycle of Eastern Pacific (EP)-E1 Nifio lies on the equator and to its north, but there is no loop to the south of the equator. In contrast, the dominant pathway in Central Pacific (CP)-E1 Nifio is located on the equator and to its south, and the propagation signal of SOTA to the north of the equator is very weak. The relationships between the zonal wind anomalies and the two types of E1 Nifio are also preliminarily discussed. It is shown that EP-E1 Nifio is more likely to respond to the westerly anomalies over the equatorial central and western Pacific, while CP-E1 Nifio is more likely to respond to the westerly anomalies over the equatorial western Pacific and need the cooperation of easterly anomalies over the equa- torial eastern Pacific to certain extent.  相似文献   

17.
Arctic dipole anomaly and summer rainfall in Northeast China   总被引:10,自引:0,他引:10  
A dipole structure anomaly in summer Arctic atmospheric variability is identified in this study, which is characterized by the second mode of empirical orthogonal function (EOF) analysis of summer monthly mean sea level pressure (SLP) north of 70°N, accounting for 12.94% of the variance. The dipole anomaly shows a quasi-barotropic structure with opposite anomalous centers over the Canadian Arctic and the Beaufort Sea and between the Kara Sea and the Laptev Sea. The dipole anomaly reflects alternating variations in location of the polar vortex between the western and eastern Arctic regions. The positive phase of the dipole anomaly corresponds to the center of the polar vortex over the western Arctic, leading to an increase in summer mean rainfall in Northeast China. The dipole anomaly has a predominant 6-year periodicity, and shows interdecadal variations in recent decades.  相似文献   

18.
Bueh  Cholaw  Shi  Ning  Ji  LiRen  Wei  Jie  Tao  ShiYan 《科学通报(英文版)》2008,53(4):610-623
In this paper, features for the evolution of the East Asia/Pacific (EAP) events and their association with high- and mid-latitude Rossby waves during the Meiyu period are analyzed on the medium-range time scale, it is shown that life cycles of the positive and negative EAP events cannot be simply regarded as "mirror" each other. In the upper troposphere, downward propagations of Rossby wave packets both over high- and mid-latitude regions of Eurasian continent and over the Asian jet region are responsible for generating basic patterns of high- and mid-latitude anomaly centers of the events. In this layer, Rossby wave packets also propagate from the mid-latitude anomaly center to the high-latitude one. In the middle and lower troposphere, the formation of the subtropical anomaly center of the event is mainly attributed to the anomalous convective activity in the tropical Pacific warm pool. The northward Rossby wave energy dispersion from this center is favorable to the enhancement and maintenance of the mid-latitude anomaly center in the same layer. Finally, it might be hypothesized that typical features of the positive and negative EAP events in their mature phase result from the interaction between (or phase-locking of) respective anomalous circulations induced both by quasi-zonal Rossby wave packets embedded in upper troposphere westerly and by quasi-meridional Rossby wave packets in the background flow of the East Asian summer monsoon in the middle and lower troposphere.  相似文献   

19.
A successful simulation of the western North Pacific summer monsoon needs a regional ocean–atmosphere coupled model(ROAM). How the performance of ROAM relies on the oceanic component model remains unknown. In this study, the authors investigated the effects of different oceanic components on the simulation of western North Pacific(WNP) summer monsoon in a ROAM. Three cases of simulations were performed, viz. the summer of 1998(El Nin o decaying phase), 2004(El Nin o developing phase), and 1993(the non-ENSO phase). Results show that the coupled simulations for different ENSO phases exhibit improvements in the simulation of location of Meiyu rainband and spatial distribution of monsoon low-level flow over WNP, whereas the systemic cold biases of sea surface air temperature are further increased. The coupled simulations with different oceanic components show similar performance, which is not ENSO phase dependent. For the case of the summer of 1998, a slightly stronger western Pacific subtropical high and colder sea surface air temperature are found in the simulation with colder sea surface temperature(SST) biases. The colder SST biases are partly contributed by the ocean dynamics processes because the sea surface net flux favors a warmer SST. This study suggests that the dependence of performance of ROAM over WNP on oceanic models is much weaker than that on atmospheric models.  相似文献   

20.
The generality and some climatological characteristics of the double ridge systems of subtropical high (SH) are investigated statistically by using the daily NCEP/NCAR reanalysis data from 1958 to 1998. The results show that the SH double-ridge event is a common phenomenon in the Northern Hemisphere, with the distinct seasonal and regional features, that is, the majority of SH double-ridge geneses concentrate over the eastern North India Ocean-western North Pacific as well as the central North Pacific in the period from mid-July to mid-September. Especially over the western North Pacific subtropics, the SH double-ridge events are extremely active. It is found that the life cycle of most double-ridge events of western Pacific subtropical high (WPSH) is shorter but some still last longer. The WPSH double-ridge events occur most frequently from July to September, while there is a paucity of occurrences during November-March. Also, it is shown that the WPSH double-ridge events have a strong interannual variation with a certain periodicity which possesses a remarkably abrupt change in the mid-1970s. Additionally, the relationship between the WPSH double ridges and the meridional movement of WPSH is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号