首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
采用1961—2015年NCEP/NCAR再分析资料和华南地区降水资料,分析了7—9月亚洲-太平洋涛动(APO)与热带西太平洋环流系统以及垂直运动、水汽输送等条件的关系,探讨了其与华南7—9月汛期强度的联系机制.研究表明:(1)7—9月APO强度的年际变化与同期华南降水雨强存在显著负相关,即APO偏强(弱)年华南汛期少(多)雨.(2)在APO偏强(弱)年,副高偏北偏东(偏南偏西),副高南侧偏东气流减弱(加强),不(有)利于热带气旋西行影响华南,华南易少(多)雨.(3)在APO偏强(弱)年,东亚副热带夏季风偏强(弱),冷空气偏北偏弱(偏南偏强),不(有)利于华南及近海的热带气旋发展,华南易少(多)雨.(4)在APO偏强(弱)年,热带西太平洋纬向风垂直切变明显增大(减小),垂直上升运动减弱(加强),不(有)利于热带气旋的生成,且热带西太平洋水汽条件易使得热带气旋偏北偏东(偏南偏西)生成,华南易少(多)受热带气旋影响和少(多)雨.  相似文献   

2.
利用一个耦合了简化的简单生物圈模式的大气环流谱模式(SSiB-GCM),初步探讨了青藏高原冬季积雪异常对东、南亚夏季风环流和降水的影响及其机理。结果表明,高原地区冬季积雪增加将使随后的夏季东、南亚季风明显减弱,主要表现为东、南亚季风区降水减少,索马里急流、印度季风槽和印度西南气流减弱。另外,还提出欧亚大陆雪盖与整个高原雪盖和高原东部雪盖对东、南亚夏季风影响的敏感性问题。与欧亚大陆雪盖相比,高原雪盖是影响东、南亚季风的更敏感区,冬季高原以外雪盖增加,有可能使亚洲季风增强;当高原东部雪盖增加时,高原以东地区及印支半岛降水减少,印度东部、南部和孟加拉湾西北部降水反而增加  相似文献   

3.
利用1950-2000年大气视水汽汇资料,分析了亚澳季风区内水汽汇准两年振荡的变化特征及其与大气环流的关系.亚澳季风区内水汽汇有显著的准两年振荡,其关键区位于西太平洋暖池、孟加拉湾、东南印度洋和西南印度洋,它们对应3种遥相关型.当暖池水汽汇偏强时,我国华南为偏北风距平,东亚季风区水汽汇偏弱;印度洋水汽汇距平呈现为偶极子分布,东南印度洋附近水汽汇偏强时,东南印度洋至赤道西印度洋为偏西风距平,赤道西印度洋水汽汇偏弱;孟加拉湾水汽汇偏强时,孟加拉湾至西南印度洋为偏南风距平,西南印度洋的水汽汇偏弱.反之亦然.  相似文献   

4.
利用云南122个气象站1961—2015年逐日最低气温和平均气温资料,分析了云南冬季寒潮的活动规律以及大气环流异常特征.结果表明:①1961—2014年(近50 a)云南冬季寒潮频次(强度)呈减少(减弱)趋势,1984年为寒潮频次(强度)由多(强)转少(弱)的一个转折点.云南冬季寒潮存在8 a左右的显著性变化周期;②云南冬季寒潮与气温、降水存在较好的协同变化.当冬季寒潮频次偏多(少)时,云南气温偏低(高),降水量偏多(少);③云南冬季寒潮频次年际变异与大气环流异常密切相关.在海平面气压场,冬季北极涛动为正(负)位相、西伯利亚高压偏强(弱)以及东亚冬季风偏强(弱)时,云南冬季寒潮频次偏多(少).在500 hPa高度场,当极涡偏强(弱)、贝加尔湖高压脊偏强(弱)、东亚大槽和南支槽偏强(弱)时,有利于云南冬季寒潮频次偏多(少);④副热带对流层上层的急流变化是影响云南寒潮频次变化的一个重要因子,其可能通过影响冷涌向南爆发的频次进而影响云南寒潮的发生频次.  相似文献   

5.
利用NCEP/NCAR再分析资料和中国160个站点的月平均降水资料,选取了2008年9月四川汶川地区特大暴雨实例,分析并验证了夏季青藏高原东部热源异常和中国局部降水异常的关系。结果表明:1夏季高原东部热源偏强会引起500h Pa风场能量偏大,其能量大值区与强降水区域分布相对应;2夏季高原东部热源偏强会引起南亚高压偏东偏强,从而引起西太副高西伸,使得水汽源源不断的向降水区域输送;3夏季高原东部热源异常时,通过加热场-高度场-降水场的同期及滞后效应,进一步影响到中国局部地区的降水异常。  相似文献   

6.
利用1961—2012年期间重庆的逐月降水和同期NCEP/NCAR再分析资料、NOAA的海温、国家气候中心提供的126项环流指数等资料,结合长周期旱涝急转指数,分析了重庆旱涝急转的时间演变特征及其与同期和前期大气环流异常的联系.结果表明:重庆夏季旱涝急转事件有阶段连续性和间歇性并存的特点,年际差异大,涝转旱强度通常比旱转涝强度偏强.旱转涝年的旱期与涝转旱年的涝期比较,其环流特征为西太平洋副高偏西、偏强、面积偏大,低层垂直下沉运动较强,来自南海及西太平洋的水汽输送较弱,重庆易处于水汽输送辐散区,易少雨偏旱.而旱转涝年的涝期对比于涝转旱年的旱期来看,其环流特征为欧洲西岸的槽偏强,极涡偏弱,西太平洋副高偏强、偏西,低层垂直上升运动较强,来自南海及西太平洋的水汽输送较强,重庆易位于水汽输送辐合区,易多雨偏涝.西太平洋副高的季节内振荡的异常是重庆旱涝急转的主要原因.前期3月和4月的PDO和西风漂流区海温指数可以作为预测重庆夏季旱涝急转的一个先兆信号,前期3月和4月的PDO偏强(弱)、西风漂流区指数偏弱(强)时,重庆夏季可能易发生旱转涝(涝转旱)事件.  相似文献   

7.
2006年夏季,汉中市发生严重的高温干旱天气。本文利用汉中市11个测站的实时和历史资料,对汉中市2006年6月中旬到8月中旬出现的高温异常天气出现时间偏早,高温干旱日数持续时间长,高温天气影响范围广的气候特点、时空分布、年际变化的成因作了综合分析,结论是:2006年夏季的异常高温干旱天气成因,与全球变暖和大气环流异常、北方南下冷空气活动偏弱,西北太平洋副高脊线偏北、青藏高压和副热带高压双重控制、冬季青藏高原积雪偏少密切相关,这些因素是导致汉中市严重高温干旱的直接原因。  相似文献   

8.
冬季青藏高原积雪与湖北汛期降水   总被引:5,自引:1,他引:4  
利用青藏高原积雪日数资料,讨论青藏高原冬季(12月--次年2月)积雪对湖北夏季降水及其旱涝的影响,结果表明,青藏高原冬季多雪年,湖北主汛期降水往往偏多,易涝,青藏高原少雪年则相反。  相似文献   

9.
强"旱涝并存、旱涝急转"(DFC)事件是华南地区夏季频发的一种气象灾害,指在同一季节内旱、涝事件交替出现的情形,是东亚夏季风季节内变异的显著表现之一,长期以来对其研究较少.文中揭示了华南夏季DFC现象与季节性严重旱、涝事件的显著差异,对华南夏季DFC的气候统计特征的研究表明:华南DFC夏季总雨量往往趋于正常,季节平均季风分布接近正常年份,强DFC夏季易"旱"且易"涝",而弱DFC夏季则较为"风调雨顺";华南DFC夏季同期大气环流的季节平均特征总体看来接近气候态(即正常年),但强DFC夏季低层80°E—130°E之间的越赤道气流、澳大利亚高压、孟加拉湾-中南半岛的偏南风水汽输送以及高层的伊朗高压和东亚东风急流均强于弱DFC夏季;此外,华南强DFC夏季前期往往伴随着冬春季的QBO信号增强、秋冬季中国近海-西北太平洋海温和春季东、西印度洋海温增暖.所有这些为华南夏季DFC现象的预测提供了有参考意义的前兆信号.  相似文献   

10.
南海夏季风强弱年青藏高原地区春季大气的低频振荡特征   总被引:1,自引:0,他引:1  
王澄海  崔洋  靳双龙  燕青 《自然科学进展》2009,19(11):1194-1202
利用NCEP/NCAR再分析资料和气象台站逐日地温、气温观测资料,通过带通滤波的方法对南海夏季风典型强弱年,青藏高原地区3—6月大气低频振荡信号分布和传播特征进行了分析研究.指出在春季青藏高原地区的高度场和纬向风场存在30-60d大气低频振荡、准双周和5—7d的大气振荡.揭示了在典型的南海夏季风强、弱年,200hPa,500hPa上低频振荡产生的位置,强度及传播特征各不相同.在典型强季风年份,高原北部形成低频振荡并向北传播;而在弱季风年份,高原地区的低频振荡具有原地振荡的显著特征.在强季风年,高原的非绝热加热削弱高原地区低频波,非绝热加热在高原以外的东西两侧中再现出来,与南北两支急流相联系.在弱季风年份,高原地区的非绝热加热起着加强高原地区低频波的作用;形成了以高原为中心的准南北方向上的振荡特征.  相似文献   

11.
The spring soil moisture and the summer rainfall in eastern China   总被引:7,自引:0,他引:7  
The relation between the soil moisture in spring and the rainfall in summer in eastern China is investi- gated. Results show that the summer rainfall in eastern China is closely related to the spring soil moisture in the area from North China to the lower reaches of Yangtze River (NCYR). When spring soil moisture anomalies over NCYR are positive, the summer precipitation exhibits positive anomalies in Northeast China and the lower reaches of Yangtze River, and negative anomalies in southern China and North China. The higher soil moisture over NCYR cools land surface and reduces the land-sea tem- perature gradient, which weakens East Asian summer monsoon. The western Pacific Subtropical High (WPSH) is located to the south and shifts westward, resulting in more rainfall in the lower reaches of Yangtze River and less in southern China and North China.  相似文献   

12.
The 1997-1998 warm event in the South China Sea   总被引:3,自引:0,他引:3  
A strong warm event happens during spring 1997 to spring 1999 in the South China Sea. Its intensity and duration show that it is the strongest event on the record over the past decades. It also corresponds with the severe flood over the valley of the Yangtze River and a couple of marine environmental events. This note addressed the evolution process by using several data sets, such as sea surface temperature, height and wind stress in addition to subsurface temperature. The onset of the warm event almost teleconnects with the El Ni?o event in the tropical Pacific Ocean. Summer monsoon is stronger and winter monsoon is weaker in 1997 so that there are persistent westerly anomalies in the South China Sea. During the development phase, the warm advection caused by southerly anomalies is the major factor while the adjustment of the thermocline is not obvious. Subsequently, the southerly anomalies decay and even northerly anomalies appear in the summer of 1998 resulting from the weaker than normal summer monsoon in 1998 in the South China Sea. The thermocline develops deeper than normal, which causes the downwelling pattern and the start of the maintaining phase of the warm event. Temperature anomalies in the southern South China Sea begin to decay in the winter of 1998-1999 and this warm event ends in the May of 1999.  相似文献   

13.
The 1997–1998 warm event in the South China Sea   总被引:3,自引:0,他引:3  
A strong warm event happens during spring 1997 to spring 1999 in the South China Sea. Its intensity and duration show that it is the strongest event on the record over the past decades. It also corresponds with the severe flood over the valley of the Yangtze River and a couple of marine environmental events. This note addressed the evolution process by using several data sets, such as sea surface temperature, height and wind stress in addition to subsurface temperature. The onset of the warm event almost teleconnects with the El Niño event in the tropical Pacific Ocean. Summer monsoon is stronger and winter monsoon is weaker in 1997 so that there are persistent westerly anomalies in the South China Sea. During the development phase, the warm advection caused by southerly anomalies is the major factor while the adjustment of the thermocline is not obvious. Subsequently, the southerly anomalies decay and even northerly anomalies appear in the summer of 1998 resulting from the weaker than normal summer monsoon in 1998 in the South China Sea. The thermocline develops deeper than normal, which causes the downwelling pattern and the start of the maintaining phase of the warm event. Temperature anomalies in the southern South China Sea begin to decay in the winter of 1998–1999 and this warm event ends in the May of 1999.  相似文献   

14.
Using meteorological observations, proxies of precipitation and temperature, and climate simulation outputs, we synthetically analyzed the regularities of decadal-centennial-scale changes in the summer thermal contrast between land and ocean and summer precipitation over the East Asian monsoon region during the past millennium; compared the basic characteristics of the East Asian summer monsoon (EASM) circulation and precipitation in the present day, the Little Ice Age (LIA) and the Medieval Warm Period (MWP); and explored their links with solar irradiance and global climate change. The results indicate that over the last 150 years, the EASM circulation and precipitation, indicated by the temperature contrast between the East Asian mainland and adjacent oceans, had a significant decadal perturbation and have been weaker during the period of rapid global warming over the past 50 years. On the centennial time scale, the EASM in the MWP was strongest over the past 1000 years. Over the past 1000 years, the EASM was weakest in 1450?C1570. When the EASM circulation was weaker, the monsoon rain belt over eastern China was generally located more southward, with there being less precipitation in North China and more precipitation in the Yangtze River valley; therefore, there was an anomalous pattern of southern flood/northern drought. From the 1900s to 1920s, precipitation had a pattern opposite to that of the southern flood/northern drought, with there being less precipitation in the Yangtze River valley and more precipitation in North China. Compared with the case for the MWP, there was a longer-time-scale southern flood/northern drought phenomenon in 1400?C1600. Moreover, the EASM circulation and precipitation did not synchronously vary with the trend of global temperature. During the last 150 years, although the annual mean surface temperature around the world and in China has increased, the EASM circulation and precipitation did not have strengthening or weakening trends. Over the past 1000 years, the weakest EASM occurred ahead of the lowest Northern Hemispheric temperature and corresponded to the weakest solar irradiance.  相似文献   

15.
华北夏季降水年代际变化与东亚夏季风、大气环流异常   总被引:3,自引:0,他引:3  
利用华北夏季降水资料和NCEP/NCAR再分析资料,对华北夏季降水、东亚夏季风年代际变化特征及大气环流异常进行研究,发现一些有意义的结果:华北夏季降水变化存在明显的8a、18a周期,东亚夏季风变化18a、28a周期性比较明显,二者年代际变化特征明显,但华北夏季降水变化和东亚夏季风变化的周期不完全一致.华北夏季降水量变化在60年代中期发生了突变,东亚夏季风变化在70年代中期发生了突变.华北夏季降水与东亚夏季风变化存在很好的相关关系,强夏季风年,华北夏季降水一般偏多,弱夏季风年,华北夏季降水一般偏少,但又不完全一致.东亚夏季风减弱是造成华北夏季降水减少的一个重要因素,但不是唯一因素,华北夏季降水减少还与环流异常密切相关.在地面上,青臧高原地区、华北地区气温下降造成华北低压系统活动减少,不利于降水.在850 hPa层上,东亚中纬度的西南季风和副热带高压南部的偏东风、西北部的西南风异常减弱,使得西南气流输送水汽很多难以到达30°N以北的地区,而副热带高压西部外围偏东南、偏南气流输送到华北地区的水汽也大量减少,水汽不足造成华北夏季降水偏少.在500 hPa高度场上,80年代欧亚遥相关型表现与50年代相反,变为欧洲( )、乌拉尔山(-)、中亚( )形势,这种环流使得乌拉尔山高压脊减弱,贝加尔湖至青藏高原高空槽变浅,纬向环流表现突出,不利于冷暖空气南北交换.同时在500 hPa气温场上,80年代,西伯利亚至青藏高原西北部的冷槽明显东移南压到蒙古至华北地区,锋区位于华北以东以南位置,使得华北地区冷暖空气交汇减少,降水也因此减少.华北夏季降水减少是由于东亚夏季风减弱和大气环流异常造成的.  相似文献   

16.
2003年东亚夏季风活动的特点   总被引:4,自引:0,他引:4  
利用2003年国家气象中心提供的再分析资料以及台站降水资料,诊断分析了2003我国东部地区汛期降水和东亚夏季风的活动特点,并对二者之间的联系进行讨论。结果表明:(1)2003年南海夏季风于5月第5候在南海南部建立。6月第1候全面爆发,比常年偏晚,南海夏季风强度也比常年偏弱;(2)该年夏季,副热带高压的一个显著特点是强度强、位置偏西,其中从6月下旬至7月中旬,副热带高压的位置稳定少变,其北脊线位25oN附近,且副高位置偏西,这导致了长江以南的犬部分地区高温少雨。这个阶段副热带高压西侧的南风气流将南海地区的水汽源源不断地输送到淮河流域,是淮河流域强降水过程水汽主要来源。  相似文献   

17.
Identifying the northernmost summer monsoon location in East Asia   总被引:3,自引:0,他引:3  
An integrated index which can be used to indicate the advance of subtropical summer monsoon in East Asia has been proposed in this paper.The index was comhined by three variables including precipitation,wind and pseudo-equivalent potential tempera- ture.The northernmost summer monsoon location(NSML)was identified by using this index annually.It was found that the NSML ex- perienced an interdecadal shift in the period 1977—1979 based on the annual index analysis from 1961 to 2001.A comparison of the NSML with other four summer monsoon indices has also been made.The result showed that the NSML could well represent the interan- nual and interdecadal variability of summer monsoon precipitation in North China(beyond 35°N),while other four indices could well indi- cate the precipitation anomalies of East Asian summer monsoon along the Yangtze River valley(around 30°N).  相似文献   

18.
Climate extremes and changes in eastern China are closely related to variations of the East Asian summer monsoon and corresponding atmospheric circulations.The relationship between frequencies of temperature and precipitation extremes in China during the last half century is investigated using Singular Value Decomposition analysis.During 1980-1996,there was a typical pattern with fewer hot days and more precipitation extremes in the northern part of eastern China,and more hot days and fewer precipitation extremes in the southern part.This geographic pattern tended to reverse after 1997,with fewer hot days and more extreme precipitation days south of the Yangtze River and vice versa to the north.Differences in atmospheric circulation between the former and latter periods are presented.We conclude that a mid-level anomalous high/low,upper-level anomalous easterlies/westerlies over the north/south of eastern China,a weakened East Asian summer monsoon and associated upper-tropospheric center of cooling(30°N,110°E) are all favorable for the changes in frequencies of temperature and precipitation extremes.  相似文献   

19.
Under the condition of land-atmosphere heat and water conservation, a set of sensitive numerical experiments are set up to investigate the response of the East Asian climate system to global frozen soil change. This is done by introducing the supercooled soil water process into the Community Land Model (CLM3.0), which has been coupled to the National Center of Atmospheric Research Community Atmosphere Model (CAM3.1). Results show that:(1) The ratio between soil ice and soil water in CLM3.0 is clearly changed by the supercooled soil water process. Ground surface temperature and soil temperature are also affected. (2) The Eurasian (including East Asian) climate system is sensitive to changes of heat and water in frozen soil regions. In January, the Aleutian low sea level pressure circulation is strengthened, Ural blocking high at 500 hPa weakened, and East Asian trough weakened. In July, sea level pressure over the Aleutian Islands region is significantly reduced; there are negative anomalies of 500 hPa geopotential height over the East Asian mainland, and positive anomalies over the East Asian ocean. (3) In January, the southerly component of the 850 hPa wind field over East Asia increases, indicating a weakened winter monsoon. In July, cyclonic anomalies appear on the East Asian mainland while there are anticyclonic anomalies over the ocean, reflective of a strengthened east coast summer monsoon. (4) Summer rainfall in East Asia changed significantly, including substantial precipitation increase on the southern Qinghai-Tibet Plateau, central Yangtze River Basin, and northeast China. Summer rainfall significantly decreased in south China and Hainan Island, but slightly decreased in central and north China. Further analysis showed considerable upper air motion along ~30°N latitude, with substantial descent of air at its north and south sides. Warm and humid air from the Northeast Pacific converged with cold air from northern land areas, representing the main cause of the precipitation anomalies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号