首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
基于分布式驱动电动汽车,提出了一种纵向车速非线性自适应估计算法.该算法使用车辆加速度传感器信息和各车轮滑移率反馈值对车辆纵向车速进行估计.从理论上证明了纵向速度估计误差收敛.根据各车轮滑移率的大小确定各轮速估计误差在估计算法中的反馈修正比例.使用带遗忘因子的递推最小二乘算法在坡道路面对路面坡度进行了在线实时估计,进而使用坡度估计值修正纵向加速度传感器信息,实现了坡度自适应纵向车速估计.该方法具有计算量小、估计精度高的优点.通过多工况的实车试验验证了算法的有效性.  相似文献   

2.
针对半挂车辆状态估计过程中测量噪声不确定、累计误差影响严重、初值敏感等问题,提出一种适用于半挂车铰接角、车速等多个状态量估计的双自适应无迹卡尔曼滤波算法(FFUKF).基于搭建的半挂汽车12自由度非线性动力学模型和轮胎模型,通过测量的轮速与车辆加速度等信息,首先利用模糊控制自适应调整滑移率容差,综合判断每个车轮的稳定状态,通过轮速估算出一种车速;与此同时,模糊控制自适应调整测量噪声,利用无迹卡尔曼算法,依据动力学估计出铰接角和另一种车速;然后通过卡尔曼滤波算法融合两种方法估计的结果,实现车辆的纵向、侧向速度、横摆角速度和挂车与牵引车铰接角的实时估计.最后在Simulink/TruckSim联合仿真环境下进行多工况仿真试验,验证所提出的双自适应无迹卡尔曼估计算法(FFUKF)有较强的适应性、稳定性和鲁棒性,相比普通模糊自适应无迹卡尔曼(FUKF)有更高的估计精度,能有效克服累计误差,即便在估计初始值不准和有ABS控制输入的情况,仍可以较精确地对车速和铰接角进行实时估计.  相似文献   

3.
混合动力电动汽车的建模与仿真研究   总被引:1,自引:0,他引:1  
为预测和分析混合动力电动汽车的性能,在系统仿真软件Matlab环境中建立了某混合动力电动汽车的仿真模型以及相应的控制器模型,并对模型进行了纯电动和混合动力行驶工况下仿真分析.结果表明,实际的仿真车速、扭矩与驱动循环规定车速、扭矩相一致,因此所开发的仿真模型能够跟踪循环工况,从而验证了仿真模型的正确性,也为混合动力电动汽车的开发奠定了基础.  相似文献   

4.
混合动力电动汽车行驶工况分析与识别   总被引:1,自引:0,他引:1  
对不同行驶工况下混合动力电动汽车的匹配和控制策略优化结果进行了分析,发现工况的平均功率和平均功率的标准差对混合动力汽车的混合度有很大的影响.在同一混合度下,针对不同的工况采用不同的可调参数可得到不同的燃油经济性和最终稳定的电池荷电状态值.提出了"工况块"的概念,用工况的平均行驶车速和行驶距离作为特征参数,将统计的理论工况进行分类,通过模糊控制器,对实际工况进行模糊分析,将其划为对应的某一类.为更准确地反映行驶工况,还提出以时间、距离、最大车速等10个参数作为工况的相关特性参数,用聚类分析的方法对车辆行驶工况的类别进行了更细致的分析和辨识.在上述工况识别的基础上,提出了一种能根据实时工况的变化作出自适应调整的混合动力汽车控制策略.  相似文献   

5.
针对机电飞轮电动汽车工作模式复杂、能量管理困难等问题,提出了一种基于确定性规则的控制策略.该控制策略以车速、加速度、车辆需求转矩、电池荷电状态、飞轮能量状态为输入量,在满足车辆实际需求的前提下对电机、飞轮进行转矩分配.利用MATLAB/Simulink搭建整车模型,在NEDC工况下对机电飞轮电动汽车进行动力性和经济性仿真分析.仿真结果表明,整车百公里加速时间为11.8 s,最高车速为156.68 km/h,车速20 km/h时最大爬坡度为26%;在NEDC循环工况下其耗电量下降了0.89%,平均驱动效率提高了8.2%.该控制策略可以实现合理的转矩分配,能够保证机电飞轮电动汽车在动力性的基础上提高经济性.  相似文献   

6.
为提高不同工况下驾驶机器人操纵试验车辆的转向精度和自适应能力,提出了一种基于自适应曲线预瞄的驾驶机器人转向操纵粒子群优化滑模控制方法。首先建立了试验车辆动力学模型和驾驶机器人转向机械手动力学模型,并构建了驾驶机器人转向操纵试验车辆的集成系统动力学模型,接着研究了一种融合路径曲率和车速的驾驶机器人转向操纵自适应曲线预瞄方法,其预瞄点位置能够根据车速和路径曲率做出自适应调整。在此基础上,设计了用于驾驶机器人转向操纵的粒子群优化滑模控制器,并进行了稳定性分析,同时利用粒子群算法在线优化滑模控制切换项的反馈增益系数,以减小控制抖振。仿真及试验结果表明,所提出的方法能够在不同工况下根据路径曲率和车速做出自适应调整,实现驾驶机器人操纵车辆的精确转向控制。  相似文献   

7.
为了优化混合动力越野车多动力源动态响应控制与燃油经济性,以需求功率为关键研究参量,设计自适应马尔科夫链预测算法,实现需求功率的实时预测.基于等效燃油消耗最小控制策略,提出考虑实时需求功率的变化寻优域,设计变域等效燃油消耗最小控制策略,实现能量管理优化.运用Cruise和Simulink软件搭建了混合动力越野车能量管理联合仿真平台,以典型越野行驶工况为仿真循环工况进行策略验证.联合仿真结果表明:所设计的自适应马尔科夫链需求功率预测算法使得整车动力性提升6.5%;与传统复合规则型策略相比,变域等效燃油消耗最小能量管理策略使得整车燃油经济性提升10.5%.  相似文献   

8.
为了进一步挖掘功率分流混合动力汽车的节能潜力,提出了一种融合驾驶意图、车间运动特征及工况历程特征信息的车速预测方法。在此基础上,以燃油经济性最优为目标,建立了基于模型预测控制的整车能量管理优化模型,并采用动态规划算法在有限时域内进行求解,实现了各动力源转矩的实时最优分配。通过MATLAB/simulink软件平台仿真验证表明:在城市道路循环工况下,车速预测精度在不同预测时域都得到了进一步的提升。相比于参数优化后的规则策略,该整车能量管理策略在3种典型工况下,燃油消耗量分别降低了28.53%、23.40%和26.42%,从而验证了该车速预测方法和整车能量管理策略的有效性。  相似文献   

9.
为了充分挖掘插电式混合动力公交车(PHEB)的节油潜力、增强车辆对不同行驶工况的适应性,在规则类控制策略的基础上增加工况识别模块,由过去一段时间内的平均车速、平均绝对加速度、怠速时间比三个特征参数作为输入,对当前工况进行模糊识别;建立自动优化平台,用模拟退火算法对关键参数进行优化,根据当前工况类型选取最优控制参数。仿真及实验结果表明,有工况识别的自适应控制策略较无工况识别控制策略增强了路况适应性,燃油经济性提高7%以上。  相似文献   

10.
为了实现汽车驾驶机器人在各种工况下对给定车速的准确跟踪,提出了一种驾驶机器人模糊车速跟踪控制方法.驾驶机器人根据试验循环工况规定的目标车速和实时采集到的试验车辆车速解算出车速误差和车速误差变化率,经过模糊推理得到驾驶机器人油门、制动、离合器机械腿和换挡机械手的下压或回收运动差值,从而实现驾驶机器人的精确定位控制.试验结果表明,试验条件的变化对模糊车速跟踪控制的影响不大,该方法具有较强的抗干扰能力,能够准确跟踪给定的目标车速,跟踪精度满足要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号