首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
电动汽车的发展带动了动力电池研究的兴起,动力电池性能测试是动力电池研究的基础,本文基于MATLAB GUI设计了一种电池测试平台,通过电池充电子系统,电池放电子系统以及电池工况测试子系统可以使用户方便地对电池进行恒流恒压充电,电池放电测试以及电池充放电工况测试,能够满足电池合理充电、电池性能测试、电池模型验证以及算法研究等需求.经实验验证,本测试平台具有较高的精度和较强的可拓展性.  相似文献   

2.
基于DSP的VRLA蓄电池在线监测系统设计   总被引:1,自引:0,他引:1  
分析了VRLA蓄电池的工作原理及其在应用中存在的问题,针对消防电源蓄电池管理,提出了基于DSP新型的集电池充、放电于一体的拓扑结构,发展了蓄电池的在线监测系统。该系统具有自动充电,自动供电,在线单节电池电压、电池容量检测功能,实现了电池的自动充、放电功能与电池管理系统容为一体,从而构建了新型的、全方位的、具有远程监控功能的蓄电池在线监测系统。  相似文献   

3.
为了试验蓄电池的寿命,必须进行数十次乃至数百次的充电和放电,每次充电到了额定的电量(即按指定的电流进行充电一定的时间)之后,即停止充电,转为放电;而放电至蓄电池电压降至某一低限(例如银锌电池电压降至1.0V)时,即停止放电,开始下一次的充电。任何一次过度的充电或放电,都会影响电池寿命,为了节约人力和避免差错,最好采用自动控制的方法, 我们采用的自动控制器线路如下图,(附图)  相似文献   

4.
为综合分析影响电池性能的热环境因素,利用恒温油浴工况、近似绝热工况分别模拟有无热管理措施的动力电池组工作热环境,对松下18650锂电池进行了充放电性能与温度相关性的基础测试,研究了电池工作热条件、电池状态及放电倍率对其充放电性能的影响。研究结果表明:无论在何种热条件下,电池充电容量总是小于上次放电容量;当充电温度低于20℃时,电池充电容量随着充电温度的降低迅速衰减,若前一次放电倍率为0.5C、充电温度从20℃降至-10℃时,充电容量衰减12%;较高的放电温度能有效抵消电池大倍率放电引起的容量损失,当电池在40℃环境中以2C倍率电流放电时,其容量衰减仅为3.7%;当电池放电倍率较小,且工作温度高于30℃时,温度对电池放电性能的影响逐渐减小;环境温度较低时,电池放电容量随温度降低迅速衰减,当电池放电温度为-10℃时,其2C倍率放电容量衰减高达50%。本研究期望对高效、可靠及合理的电池热管理系统的设计提供理论依据。  相似文献   

5.
针对一般太阳能供电系统中电池充放电频次高、太阳能电量利用率低的问题,设计了一种具有供电源自动切换功能的WSN节点供电系统。该系统能自动检测并分析太阳能电池板输出电压值与设定阈值大小关系,由单片机根据分析结果控制供电源在太阳能电池板与充电电池之间自动切换。系统具有基本的电池充电及放电保护等功能。测试结果表明:该系统能在白天光照适合时有效降低电池充放电频次、提高太阳能电池电量利用率,可为野外环境中的WSN节点提供持续稳定的5 V和3.3 V工作电压,电压值平均偏差小于3%。  相似文献   

6.
以中间相炭微球和活性炭为原料,采用物理混合的方法制备锂离子电池复合负极材料.用扫描电镜、X线衍射仪、恒电流充放电和循环伏安(CV)测试来表征材料的表面形貌、结构和电化学性能.研究结果表明:制备复合材料的中间相炭微球和活性炭混合均匀;复合材料首次放电和充电比容量分别为549和290 mA-h/g,当电压为0.25~3.00 V时,复合材料充电曲线斜率介于中间相炭微球和活性炭的充电曲线斜率之间,比容量为93 mA-h/g,显示复合负极材料同时具有脱嵌锂特性和双电层特性;循环30次后,复合材料的放电容量为240 mA-h/g;在充放电电流密度为4 A/g时,复合材料的电化学极化较中间相炭微球的极化显著降低,是一种具有发展前途的锂离子电池负极材料.  相似文献   

7.
自然灾害后的电力线路巡检中需要无人机高强度、高频次启动巡检,但无人机电池日常不能满电保存,续航能力只有15~30 min,现有的无人机充电装置充满电池需要3~5 h,且无法进行外出巡检应急充电.为此,提出巡检无人机组应急充电装置及其电源管理技术,设计开发满足前述需求的整流、逆变技术,研制无人机电池应急充电装置.利用TCP/IP协议远程传输电池电压电流信息,并建立巡检无人机车载应急充电电源管理系统,实现对电池组应急充电管理及其电源远程监控.实验测试结果表明,应急充电电源管理系统可兼容不同厂家、不同型号无人机电池的应急充电与远程管理,实现一套无人机应急充电装置满足5架无人机高频次巡检的锂电池组应急充电需求.  相似文献   

8.
电池充电单元是真空断路器操作电源中的核心部件,事关整个电源系统的性能优劣.该设计提出了一种新型的电池充电单元,其功率转换环节采用反激式变换电路,可有效提高功率密度、减少系统体积和成本;控制环节基于UC3844型专用芯片,实现峰值电流控制模式,可有效提高系统运行性能.设计了专门功能电路,可实现电池充电三段模式转换功能和电池保护报警功能.实验室测试结果表明,所设计的电池充电单元输出电压精度较高,具有良好的静态和动态特性.  相似文献   

9.
大功率铅酸动力电池带负脉冲充电系统设计   总被引:1,自引:0,他引:1  
郭毅锋 《科学技术与工程》2013,13(12):3448-3451
根据铅酸动力电池本身特性,分析了在充电过程中带负脉冲放电能够提高电池对于充电电流的接受率;设计了大功率铅酸动力电池带负脉冲放电的脉冲变电流快速充电系统,给出了系统的硬件框图,以及主电路图。使用该系统对48V100Ah电动车辆用铅酸动力电池进行充电实验,得到了系统主电路效率曲线、带负脉冲充电电流曲线以及充电容量曲线。由实验证实,该系统所采用的带负脉冲放电的脉冲变电流充电方法使得充入电池同样容量的充电时间缩短,且该充电系统在高频下满载效率为92.7%,功率在1 600 W时达到系统最高效率点93.2%,经连续运行无任何问题。  相似文献   

10.
采用尖晶石LiMn2O4材料制作了18650型锂离子电池, 分析了影响锂离子电池大电流放电性能的主要因素如极耳、极片、电解质溶液等。又采用新型正极材料LiMnxNiyCozO2开发出性能更优越的18650型高功率锂离子电池, 该电池可10C连续放电和8C快速充电, 并具有优秀的循环性能和搁置性能。18650型高功率锂离子电池的开发, 为研制混合电动车(HEV)用高功率锂离子电池提供了实验依据。  相似文献   

11.
采用尖晶石锰酸锂和以锰为主的多元金属氧化物正极材料分别研制了Mn 系正极高功率和高容量动力锂离子二次电池, 研究并比较了Mn 系动力电池与海内外几家公司制造的LiFePO4动力电池的电化学性能。结果表明Mn 系高容量和高功率动力电池不仅具有高能量密度、优越 的高低温与倍率充放 电特性、热稳定性良好, 同时电池的 SOC-OCV 线性关系还有利于管理系统的控制, 因此该类动力电池会成为今后动力电池的一个重要发展方向。  相似文献   

12.
锂离子电池管理系统研究   总被引:2,自引:0,他引:2  
在分析锂离子电池性能和工作原理的基础上,对车用动力锂离子电池管理系统进行了设计。系统的功能模块主要包括电池保护模块、电池监测模块、SOC模块和均衡充放电模块。最后利用CAN总线对其进行通讯设计。  相似文献   

13.
曲杰  李治均  王超 《科学技术与工程》2020,20(22):9210-9216
为了测试充放电过程中锂离子电池膨胀力及膨胀位移,本文拟开发相应的测试试验台。该实验台由充放电系统、环境控制系统、测试系统、数据采集系统等四部分组成。为了模拟电池对测试装置响应,提出了一种表征充放电过程中锂电池热-机-电耦合作用的等效方法。基于开发的试验台,测试不同放电倍率下电池膨胀位移-SOC曲线及电池膨胀力-SOC曲线,使基于温度-电流电压-力的电池管理系统的开发成为可能。  相似文献   

14.
为了检测钒电池的充放电性能,根据全钒液流电池的特点,标称出钒电池的额定参数。在不同电流密度下对单体钒电池进行充放电容量测试实验。比较了不同电流密度下的充电曲线,从理论上分析充电差异的原因,总结充电电流与钒电池容量的关系。实验表明,对钒电池进行充放电时采用的电流密度为60~80 m A/cm2之间的值,钒电池电学性能参数最佳。  相似文献   

15.
用电化学阻抗谱(EIS)方法,对金属氢化物(MH)电极和两种商品化金属氢化物/镍(MH/Ni)电池性能进行了研究,通过建立等效电路模型分析了MH电极的电化学阻抗谱,结果表明,在不同放电深度和充放电循环时,电极的欧姆阻抗,反应电阻和界面电容等呈规律地变化,并与电极性能的变化相一致,欧姆阻抗和由制备工艺带来的电极反应性能折差别,是引起两种商品化MH/Ni电池电化学充放电性能差别的主要原因,也说明EIS可用于检测MH电极的荷电状态和反应性能,并可作为在线无损伤MH/Ni电池性能测试技术。  相似文献   

16.
Dandelion-like TiO2 microspheres consisting of numerous rutile single-crystalline nanorods were synthesized for the first time by a hydrothermal method. Their crystal structure, morphology and electrochemical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and galvanostatic charge and discharge tests. The results show that the synthesized TiO2 microspheres exhibit good rate and cycle performances as anode materials of lithium ion batteries. It can be found that the dandelion-like structure provides a larger specific surface area and the single-crystalline nanorod provides a stable structure and fast pathways for electron and lithium ion transport, which contribute to the rate and cycle performances of the battery.  相似文献   

17.
电池均衡控制策略研究   总被引:5,自引:0,他引:5  
为了提高蓄电池的使用寿命,改善混合动力汽车的经济性和动力性,在对蓄电池的不均衡状况进行分析的基础上,建立了单体电池的不均衡特性的模型和电池组能量分流充放电均衡控制的模型,并提出了蓄电池组的能量分流充放电控制策略.并进行了能量分流充放电控制策略的仿真计算,得到满意的结果.  相似文献   

18.
针对太阳能的特点和锂电池的特性,设计基于MC9S12XS128和LTC6803-4的WSN节点光伏充电管理系统,设计锂电池组充放电、温度检测、电压采集和均衡控制等硬件电路,编写相应的底层软件,将电池电压、充放电电流、电池温度的采样值与实际值进行比较,验证采样值的准确性,同时分析均衡控制的效果.实验结果表明:设计的光伏充电管理系统运行安全、可靠,能为WSN节点提供稳定的能量来源.  相似文献   

19.
手机电池智能测试仪的设计   总被引:1,自引:0,他引:1  
针对目前市场手机电池的质量问题,介绍一种由AT89C51AC2单片机为核心的手机电池测试仪的设计.本文设计的手机电池测试仪通过对电池充放电试验、电池容量测试试验、循环充放电寿命试验及电池内阻估算,并且对过充、过放及短路保护测试,完成手机电池高可靠性、高精度的检测,能有效地检测手机电池的质量,以此更好地规范市场、维护消费者利益.  相似文献   

20.
A novel composite of monoclinic manganite/ multi-walled carbon nanotubes (γ-MnOOH/MWCNTs) composite as a cathode material of lithium-air batteries was successfully synthesized by a simple one-step hydrothermal method. Owing to the unique three-dimensional network of γ-MnOOH embedded in the porous structure of MWCNTs, the γ-MnOOH/MWCNTs composite could have an advantage of high electrocatalytic activities over those of two other kinds of cathode materials (MWCNTs and y-MnOOH/MWCNTs mixture). The results of charge- discharge tests showed that the γ-MnOOH/MWCNTs composite as a cathode material of lithium-air batteries could effectively enhance the catalytic activity for the oxygen evolution reduction (OER) process. The lithium-air battery based on y-MnOOH/MWCNTs composite exhibits low charge potential and high discharge capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号