首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为解决阈值电压对电源电压和输入信号的受限问题,提出一种实用的电平位移电路,为运放的输入级提供良好的电平位移。采用互补金属氧化物半导体(CMOS)0.5μm工艺设计的低电压全摆幅CMOS运算放大器,中间级采用适合低电压工作的低压宽摆幅共源共栅结构,输出级采用传统的Class A类得到轨至轨的输出。采用Hspice软件对所设计的电路进行仿真。研究结果表明:当电源电压降至或者小于NMOS与PMOS的阈值电压之和时,在任何共模输入电压下,该运放都能正常工作,实现输入级的全摆幅和恒跨导;在1.3 V单电源供电情形下直流开环增益达106.5 dB,单位增益带宽为2.3 MHz,功耗178.8μW。电路结构简单紧凑,具有实用的电平位移功能,适合于低电压应用。  相似文献   

2.
目的 设计一个具有轨对轨输入和输出摆幅的两级CMOS运算放大器.方法 输入级采用两对单一类型的n沟道差分对管作为输入管,用两个相同的n沟道源跟随器来完成输入电平的直流电平转移,实现了轨对轨的输入摆幅;输出级采用前馈甲乙类控制的轨对轨输出级,保证了轨对轨的输出摆幅和较强的驱动能力.结果 用标准的0.6μm CMOS BSIM3v3模型库对该放大器进行了仿真,开环电压增益、单位增益带宽和相位裕度分别达到了113.57dB,11.9MHz和53°,输入级跨导的变化在±5%内.结论 所设计运算放大器其输入和输出摆幅为轨对轨,满足设计所提要求.  相似文献   

3.
1.5 V低功耗CMOS恒跨导轨对轨运算放大器   总被引:1,自引:0,他引:1  
运算放大器是模拟集成电路中用途最广、最基本的部件。随着系统功耗及电源电压的降低,传统的运算放大器已经不能满足低压下大共模输入范围及宽输出摆幅的要求。轨对轨运算放大器可以有效解决这一问题,然而传统的轨对轨运算放大器存在跨导不恒定的缺点。本文设计一种1.5V低功耗CMOS恒跨导轨对轨运算放大器,输入级采用最小电流选择电路,不仅实现了跨导的恒定,而且具有跨导不依赖于理想平方律模型、MOS管可以工作于所有区域、移植性好的优点。输出级采用前馈式AB类输出级,不仅能够精确控制输出晶体管电流,而且使输出达到轨对轨全摆幅。所设计的运算放大器采用了改进的级联结构,以减小运算放大器的噪声和失调。基于SMIC0.18μm工艺模型,利用Hspice软件对电路进行仿真,仿真结果表明,当电路驱动2pF的电容负载以及10kΩ的电阻负载时,直流增益达到83.2dB,单位增益带宽为7.76MHz,相位裕度为63°;输入输出均达到轨对轨全摆幅;在整个共模输入变化范围内跨导变化率仅为2.49%;具有较高的共模抑制比和电源抑制比;在1.5V低压下正常工作,静态功耗仅为0.24mW。  相似文献   

4.
介绍了一种输入轨至轨CMOS运算放大器,该放大器采用了共源共栅结构做增益级,在输入级跨导使用了电流补偿,以使其几乎恒定.在3 V电源电压下的静态功耗只有180μW,带5 p的负载电容时,直流开环增益,单位增益带宽分别达到75 dB,1.5 MHz.  相似文献   

5.
一种宽频带大摆幅的三级CMOS功率放大器   总被引:2,自引:1,他引:1  
设计了一种用于耳机驱动的CMOS功率放大器,该放大器采用0.35μm双层多晶硅工艺实现,驱动32Ω的电阻负载.该设计采用三级放大两级密勒补偿的电路结构,通过提高增益带宽来提高音频放大器的性能.仿真结果表明,该电路的开环直流增益为70dB,相位裕度达到86.6°,单位增益带宽为100MHz.输出级采用推挽式AB类结构,能有效地提高输出电压的摆幅,从而得到电路在低电源电压下的高驱动能力.结果表明,在3.3V电源电压下,电压输出摆幅为2.7V.  相似文献   

6.
设计了高单位增益带宽积、大摆率、宽输出摆幅的运算放大器,该运算放采用了两级全差动结构.设计采用增加1个前馈放大级电路,以此产生1个左半平面零点并与第一个次极点相抵消的频率补偿方案,达到了环路稳定的要求.另外,提出一种新颖的共模反馈(CMFB)方案,使共模抑制比达到62dB,电路采用CSMC公司的0.5μm CMOS数模混合信号工艺设计并经过流片.测试结果表明,在单电源3.3 V电压下,运放的直流增益为65.5 dB,单位增益带宽积达350 MHz以及±2.7 V的输出摆幅.  相似文献   

7.
基于0.13,μm工艺,设计一个用于1.2,V低电压电源的10比特83MSPS流水线模数转换器的两级运算放大器.该放大器采用折叠共源共栅为第一级输入级结构,共源为第二级输出结构.详细介绍了运算放大器的设计思路、指标确定方法及调试中遇到的问题和解决方法.模拟结果显示:该运算放大器开环直流增益可达79.25,dB,在负载电容为2,pF时的单位增益频率达到838 MHz,在1.2,V低电压下输出摆幅满足设计要求,高达1 V,满足了10比特低电压高速度高精度模数转换器的要求.  相似文献   

8.
设计了一种恒跨导恒增益的轨到轨运算放大器.输入级采用一倍电流镜控制的互补差分对结构,实现轨到轨和恒跨导.通过分析运算放大器电压增益随共模电压变化的原因,提出了一种前馈型恒增益控制模块,可以根据共模电压开启或关闭附加电流源,使运算放大器电压增益保持恒定.输出级采用前馈型AB类输出结构,以达到轨到轨输出效果.采用Chartered公司0.35μm工艺进行流片,仿真及测试结果表明:该运算放大器的直流开环增益为125dB,单位增益带宽为8.879MHz,在整个共模范围内电压增益最大变化率为1.69%.  相似文献   

9.
本文报道了一种具有高共模输入范围和高输出电压摆幅的CMOS运算放大器。为了达到高的共模输入电压范围,使用了互补差分对。输出级采用了AB类推挽输出以获得高的输出摆幅。计算机模拟结果表明,运算放大器具有73dB的开环增益。在电源电压为±5V时,负载电阻为10kΩ,输出电压摆幅为±4.8V。  相似文献   

10.
一种高性能全差分运算放大器的设计   总被引:1,自引:1,他引:0       下载免费PDF全文
设计了一种具有高增益、大带宽的全差分折叠式共源共栅增益自举运算放大电路,适用于高速高精度流水线模数转换器余量增益电路(MDAC)的应用,增益自举运算放大器的主放大器和子放大器均采用折叠式共源共栅差分结构,并且主放大器采用开关电容共模反馈来稳定输出电压,该放大器工作在5.0V电源电压下,单端负载为2pF,采用华润上华(CSMC)0.5μm 5VCMOS工艺对电路进行仿真测试,结果显示该运放的直流增益可达到126.3dB,单位增益带宽为316MHz。精度为0.01%时的建立时间为4.3ns。  相似文献   

11.
设计了一种基于CMOS工艺的带隙基准电压源。该基准电压源采用MOS管电流镜技术补偿其输出电压所经过的三极管的基极电流,采用共源共栅电流源作为负载,具有结构简单、低温漂、高电源抑制比特性。仿真结果表明,在VDD=5 V时,该电路具有6.5×10-6V/℃的温度特性和52 dB的电源抑制比。经流片测试,其性能良好,已应用到光通信用跨阻放大器中。  相似文献   

12.
分析并设计了一种高速、高增益、低功耗的两级全差分运算放大器.该运算放大器用于高速高精度模数转换器中.运算放大器第一级采用增益自举cascode结构获得较大的直流增益,采用2个新的全差分运算放大器替代传统的4个单端运算放大器作为增益自举结构.该放大器采用SMIC 0.18μm CMOS工艺设计,电源电压1.8 V,直流增益125 dB,单位增益带宽300 MHz(负载3 pF),功耗6.3 mW,输出摆幅峰峰值达2 V.  相似文献   

13.
基于标准0.18μm CMOS工艺,设计一款输入恒跨导、输出全摆幅的运算放大器.利用最小电流选择电路实现输入的恒定跨导,并采用前置Class AB的结构提高输出驱动能力,实现最大的输出摆幅;同时引入内嵌式的米勒补偿电路来保证放大器工作的稳定性.设计结果表明:在典型工艺角下,0.0~1.8V的共模输入范围内,跨导的变化仅为1.6%,输出摆幅范围为0.005~1.800V,开环增益107.9dB,相位裕度为61.2°,功耗为658.8μW.  相似文献   

14.
为了满足1024×1024像素焦平面红外探测器高速采集系统中模数转换器的需求,采用0.35μm CMOS工艺技术,设计了12-bit、40-Msample/s的流水线模数转换器第一级的级间增益放大器.在传统两级运放的基础上,采用交叉耦合的AB类输出级和共源共栅补偿,提高了输出摆幅和带宽,并通过数学工具对功耗进行了优化.在电路设计基础上完成了版图设计与后仿真,达到直流增益92 dB、输出摆幅4 V、静态功耗35 mW、反馈系数1/4的情况下带宽达到170 MHz、相位裕度69°等指标,满足系统设计需求.  相似文献   

15.
基于全差分结构介绍一种高速CMOS运算跨导放大器,该放大器由折叠共源共栅输入级和共源增益输出级构成,输出级采用极点-零点补偿技术以获取更大的带宽和足够的相位裕度。电路可用在10位20 MSps全差分流水线A/D转换器的采样/保持级或级间减法/增益级中。经过优化设计后,该放大器在0.6μmCMOS工艺中带宽为290 MHz,开环增益为85 dB,功耗为16.8 mW,满足高速A/D转换器要求的性能指标。  相似文献   

16.
设计了一款静态电流小、驱动能力大、环路响应快的单片集成低压差线性稳压器,重点介绍了误差放大器、补偿电路和瞬态响应增强电路的设计方法.误差放大器的输入管采用共源共栅结构,输出级采用推挽电路,可提高放大器的驱动能力;补偿电路使用共源共栅补偿方法,补偿电容约1pF,环路相位裕度大于60°;瞬态响应增强电路采用动态偏置结构,使稳压器输出电压的上过冲有明显改善,提高了瞬态响应性能.稳压器的输出不用接片外电容,在片内集成50-100pF的电容即可稳定工作.  相似文献   

17.
基于2 μm CMOS工艺,设计实现了一种2.4 V低功耗带有恒跨导输入级的Rail-to-Rail CMOS运算放大器.采用尾电流溢出控制的互补差分输入级和对称AB类推挽结构的输出级,实现了满电源幅度的输入输出和恒输入跨导;运用折叠共源共栅结构作为中间增益级,实现电流求和放大.整个电路在2.4 V的单电源供电下进行仿真,直流开环增益为76.5 dB,相位裕度为67.6 ,单位增益带宽为1.85 MHz.  相似文献   

18.
周游 《科学技术与工程》2011,11(14):3201-3203
设计和研究了一种高增益恒跨导Rail-Rail CMOS运算放大器,输入级采用工作在亚阈值区的互补差分形式输入结构。与以往输入结构相比,不仅使输入共模电压达到Rail-Rail,而且降低了工作电压,提高了电源利用率。利用电流开关的作用使输入跨导在输入共模范围内恒定。中间级为MOS差分结构,并且同向驱动输出级使其具有推挽特性。采用嵌套米勒频率补偿使运算放大器稳定。整个电路采用华虹0.35μmCMOS工艺参数进行设计,工作电压为3.0 V。利用OrCAD HSPICE仿真结果显示,在10 kΩ电阻和5 pF电容的负载下,运算放大的直流开环增益为110 dB,相位裕度为70°,单位增益带宽为45 MHz。  相似文献   

19.
针对传统低压微功耗电流镜运算跨导放大器存在低增益和小摆率的缺陷,设计了一款新型电流镜运算跨导放大器。在不影响电路的静态功耗和稳定性的基础上,该运算跨导放大器采用增益提高(gain-boosting, GB)结构,增大了电路的小信号增益;引入开关型摆率增强(switched slew-rate enhancement, SSRE)结构,提高了电路的大信号摆率。基于UMC 0.11μm标准CMOS工艺进行电路设计和仿真。仿真结果表明:在1.2 V电源电压和10 pF负载电容下,与传统电流镜运算跨导放大器相比,设计的新型电流镜运算跨导放大器的增益提高了47 dB,正摆率提高了11.2倍,负摆率提高了12.4倍。  相似文献   

20.
针对单极型非晶氧化物薄膜晶体管(TFT)逻辑电路存在较大功耗等问题,提出一个采用动态负载的三级架构反相器.该反相器基于Pseudo-CMOS(伪互补金属氧化物半导体)拓扑结构,采用由输出信号驱动的动态负载替代Pseudo-CMOS反相器中的二极管连接负载,使输入级的输入管与负载管驱动信号互补,实现反相器零静态电流,并弱化了功耗与摆幅的制约关系.基于TFT的电流公式,讨论了反相器中晶体管的宽长比对输出摆幅和功耗的影响,通过优化晶体管的宽长比进一步提高输出摆幅,降低电路功耗.在Silvaco软件中仿真验证结果表明:在相同的工艺条件下,与Pseudo-CMOS反相器相比,采用动态负载的三级架构反相器输出摆幅提高了13.13%,并显著降低了静态电流.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号