首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
为设计线控转向汽车的理想转向传动比,以提高汽车转向时的操纵稳定性,基于Car Sim实车模型进行车辆特性化仿真分析,推导了实际横摆角速度增益的计算公式,以此为基础对线控转向系统的变角传动比特性进行分段研究。中低速段采用定增益法,将遗传算法与汽车操纵稳定性评价指标相结合,优化从方向盘转角到汽车响应的固定横摆角速度增益,以作为中低速段理想传动比的设计依据;中高速段提出将横摆角速度增益与侧向加速度增益按可变权重共同控制的方法设计理想转向传动比。通过Car Sim/Simulink联合仿真,选取双移线实验工况、角阶跃实验工况及稳态加速回转实验工况对控制方法进行验证。实验结果表明,基于所提出的实际横摆角速度增益,采用横摆角速度增益与侧向加速度增益相结合的方法分段设计理想传动比,能够减轻驾驶员的转向驾驶负担,提高汽车转向时的操纵稳定性。  相似文献   

2.
针对四轮独立驱动电动汽车转向稳定性的横摆力矩控制问题,建立了七自由度整车模型和Dugoff轮胎模型.基于滑模控制理论,选择质心侧偏角和横摆角速度两者为联合控制变量,并以汽车车速和路面附着系数为输入,运用模糊控制理论确定联合控制变量的联合控制参数,设计了四轮独立驱动电动汽车转向稳定性的横摆力矩控制策略.在Matlab/Simulink环境下选取不同车速、不同路面附着系数进行了连续转向行驶和突然转向行驶的仿真分析.结果表明,所设计的控制策略能够将质心侧偏角和横摆角速度控制在稳定范围内,使车辆在任意转向行驶工况下保持稳定,最大限度地提高轮毂电动汽车的转向稳定性.  相似文献   

3.
为了提升四轮独立驱动电动汽车低速机动性和高速稳定性,提出四轮转向和横摆力矩联合控制策略。针对普通模糊控制器参数和控制规则固定、自适应能力差等缺陷,利用自校正模糊控制器进行模糊控制参数在线修正,建立Matlab/Simulink与Car Sim联合仿真模型,并针对低速急剧双移线工况和高速连续正弦工况,进行了仿真分析,对比了无控制、有参数自校正模糊控制和无参数自校正模糊控制三种控制策略,结果表明:基于参数自校正模糊控制的四轮转向和横摆力矩联合控制策略有效提高了低速机动性和高速稳定性。  相似文献   

4.
利用Carsim和Matlab/Simulink搭建驾驶员闭环控制的四轮轮毂电机独立驱动电动汽车仿真模型;根据轮毂电机驱动电动汽车特点,建立轮毂电机模型、速度控制模型和整车模型;设计横摆力矩控制器和力矩分配控制策略,实现联合仿真的接口设置;最后利用双移线工况验证了所开发模型的正确性和转矩分配策略的有效性。  相似文献   

5.
针对四轮轮毂电机电动车横摆力矩控制问题,进行横摆力矩参数自调整模糊控制研究,确定整车横摆力矩分层控制结构.基于参数自调整模糊控制理论设计附加横摆力矩决策控制器.利用四轮驱动力矩独立可控的优势,采用规则分配方法进行四轮驱动力分配,并通过CarSim与Matlab/Simulink联合仿真实验,选取连续正弦方向盘转角输入工况对控制方法进行验证.结果表明:四轮轮毂电机横摆力矩参数自调整模糊控制方法能够有效提高车辆行驶稳定性.  相似文献   

6.
针对目前所研究的四轮独立驱动(4WID)轮毂电机式电动实验车各轮驱动电机转矩独立控制且调节迅速的特点,对其横向失稳状态的稳定性控制进行了理论研究。采用分层方法,上层基于滑模控制理论,分别设计了以车身横摆角速度和质心侧偏角为控制变量并考虑其误差变化率的高阶滑模控制器,采用消除两控制变量耦合影响的协调控制策略产生维持汽车稳定所需的附加横摆力矩。根据所需附加横摆力矩的大小,在下层分配设定一个阈值判断模块,通过判定在效率车轮"差值驱动"或"差值驱动+差动制动同步协调"的四轮驱动/制动力协同分配这两种模式之间切换选择来产生附加横摆力矩的方法对汽车失稳状态进行主动干预,最后在所建立的包含"魔术公式"轮胎模型及集成电机控制模型的九自由度非线性4WID轮毂式电动汽车模型进行了典型试验工况下的仿真验证。结果显示,3个评价操稳性的重要参数在系统控制下得到很好地改善,横摆角速度的变化幅值能控制在0.291 rad/s以内,基本跟随转向输入的变化,且很好地跟踪二自由度理想汽车模型下的期望横摆角速度;同时质心侧偏角变化幅值则控制在0.077 rad以内,并接近所期望的质心侧偏角幅值0.025 rad;侧向加速度最大幅值也由无控制的8.224 m/s2变化到了6.545 m/s2,且跟随转向输入而变化。表明采用的控制方法能有效地提高汽车行驶工况下的操纵稳定性和主动安全性。  相似文献   

7.
李刚  杨志 《科学技术与工程》2020,20(4):1663-1668
伴随汽车的电子化与智能化发展,针对四轮独驱电动汽车驱/制动力独立可控的优势,提出了一种考虑驾驶员制动特性的四轮独驱电动汽车复合制动控制策略。通过应用车辆动力学仿真软件CarSim与MATLAB/Simulink软件建立车体模型、电机模型、电池模型和能量回收控制模型,并合理分配前后轴制动力矩和液压制动与电机制动的比例,通过两种不同循环实验工况对能量回收控制方法进行仿真实验验证。实验结果表明:所提出的复合制动控制策略可以有效分配汽车前后轴制动力矩,保证汽车制动稳定性,并获得较高的能量回收率,提高汽车行驶里程。  相似文献   

8.
针对后轮轮毂电机驱动电动汽车横向稳定性的控制问题,建立了分层控制结构。上层控制器基于拉盖尔函数模型预测控制理论,跟踪理想横摆角速度,同时考虑附加横摆力矩约束,得出附加横摆力矩需求;下层控制器以后轮轮胎利用率为目标函数,考虑轮胎附着约束和执行器约束,通过求解二次规划问题将附加横摆力矩分配到两个后轮。选取前轮转角阶跃输入和双移线2种工况,利用Carsim与Matlab/Simulink进行了联合仿真,仿真结果表明:在高附着路面条件下,所设计的控制方法减小了汽车瞬态响应的反应时间和超调量,提升了汽车瞬态响应的品质;在低附着路面条件下,所设计的控制方法使汽车能跟踪理想横摆角速度,避免汽车转向失稳。  相似文献   

9.
为了提高轮毂电机驱动汽车的纵横向稳定性,将汽车的横摆控制和防滑控制相结合,采用分层控制架构搭建纵向和横向稳定性联合控制模型.上层为力矩决策层.基于比例-积分-微分(PID)控制算法构建车辆纵向车速跟踪控制器;基于模糊P ID控制算法搭建驱动防滑控制器,采用前馈加反馈的控制方法决策出驱动防滑力矩;基于二阶滑模控制算法建立直接横摆力矩控制器,设计附加横摆力矩加权模块控制汽车的横摆特性.下层为力矩分配层.采用优化分配算法将上层决策出的总纵向力矩、驱动防滑力矩和直接横摆力矩合理地分配到4个车轮上.通过加速和转向联合仿真工况验证设计的纵横向稳定性控制策略的有效性.研究结果表明:车轮最大滑转率为0.17,横摆角速度最大偏差值为0.01 rad/s,质心侧偏角最大偏差值为0.011 rad,验证了控制算法的有效性.  相似文献   

10.
四轮轮毂电机驱动电动汽车扭矩分配控制   总被引:20,自引:1,他引:19  
根据四轮轮毂电机驱动电动汽车驱动刷动力矩独立可控的特点,采用层次化结构的控制分配方法,优化分配驱/制动扭矩来提高车辆的操纵稳定性.控制器由运动控制器和控制分配器组成,其中运动控制器根据车辆状态产生所需总横摆力矩,控制分配器优化分配各轮上的驱/制动扭矩,同时考虑了各种执行器的约束条件.仿真结果表明:采用层次化结构的控制分配方法充分利用了垂直载荷较大的轮胎摩擦圆,降低了总的轮胎利用率,提高车辆的操纵稳定性.与平均分配的方法相比,稳定性控制效果更佳.  相似文献   

11.
为了解决轮边驱动电动汽车由于控制自由度冗余易造成的操纵稳定性降低的问题,基于逻辑门限值理论设计了一种使车辆能适应转向行驶及直线行驶的驱动转矩协调综合控制系统.该控制系统考虑了车辆转向行驶时轴荷转移、向心力及轮胎侧偏等影响,实现车辆的转向差速控制,使车辆能够按照驾驶员的期望在理想道路轨迹上行驶;并通过对驱动电机转矩进行协调控制,消除非期望横摆力矩的影响,提高车辆在直线行驶过程中的操纵稳定性.仿真结果表明,所提出的转矩协调控制方法改善了轮边驱动电动汽车的操纵性能.  相似文献   

12.
针对四轮驱动电动汽车力矩分配问题,提出了一种考虑轮胎滑移能量的四轮驱动电动汽车控制结构与力矩分配方法.该方法将高级底盘控制HCC结构与最优控制相结合,在HCC结构的基础上,将车辆侧向力的控制从HCC结构中分离,通过最优控制车辆主动前轮转向和直接横摆力矩来实现车辆的稳定行驶.提出了一种适用于HCC结构的增量型最小化滑移能量力矩分配方法,并基于UniTire滑移能量模型进行了相关的动力学仿真.结果表明在不控制前轮转向和横摆力矩的情况下车辆是失稳的,而采用文中所提结构结合最小化轮胎负荷率或最小化轮胎滑移能量是可以保证车辆侧向稳定的.   相似文献   

13.
 针对高速工况下四轮独立驱/制动电动车的车道偏离问题,提出一种基于主动转矩分配的车道保持辅助控制方法。该方法的辅助控制系统分为3层,顶层控制器根据人-车-路信息实时进行辅助控制决策,并计算车道保持所需的横摆响应;中层控制器基于滑模控制算法,计算横摆响应跟踪所需的附加横摆力矩;底层控制器通过主动转矩分配产生附加横摆力矩,干预车辆行驶轨迹,以达到车道保持的目的。采用CarSim/Simulink联合仿真进行高速单移线实验验证,结果表明,提出的基于主动转矩分配的四轮独立驱/制动电动车车道保持辅助控制方法,具有良好的车辆动力学稳定性,在高附路面和低附路面上均能够有效地干预车辆行驶轨迹,防止车辆偏离车道。  相似文献   

14.
为了实车验证四轮独立驱动轮毂电机电动车驱动转向集成控制算法,开发了线控转向四轮轮毂电机驱动实验车并进行了集成控制算法实车实验。介绍了线控转向四轮轮毂电机驱动实验车部件组成和控制系统结构。根据集成控制算法验证需要,对实验车进行了转向差速功能实验和四轮独立驱动功能实验;并对基于模型预测控制理论的驱动转向集成控制算法选择方向盘角正弦输入实验进行了实车验证。实车实验结果表明:实验车具有满足集成控制实验验证所需功能;驱动转向集成控制算法够控制实车较好跟踪期望运动。  相似文献   

15.
为研究复杂环境下车辆主动前轮转向系统(AFS)稳定性问题,提出一种基于RBF神经网络的主动前轮转向自抗扰控制(ADRC)方法,通过设计RBF神经网络结构采用梯度下降法达到自抗扰控制器参数整定的目的,改善ADRC参数多整定耗时且控制效果难以保持最优的不足;针对车辆AFS定传动比的不足,设计固定横摆角速度增益的理想变传动比规则。结果表明,基于RBF神经网络的ADRC策略能够较好的实现动态跟踪主动前轮转向理想横摆角速度,同时相比ADRC抗干扰量提高了25.8%,有效抑制了横摆角速度的振荡幅值。可见该方法提高了理想横摆角速度的跟踪能力,改善了车辆的可控性和稳定性并具有良好控制精度。  相似文献   

16.
为提高电动汽车的空间稳定性,开展基于轮毂电机和主动悬架的整车横摆-侧倾运动联合控制.分析了轮毂电机差动驱动联合主动悬架控制对车身横摆-侧倾运动的影响,制定了空间稳定性协同控制策略.以横摆角速度和质心侧偏角为状态变量,设计了基于参考模型的横摆稳定性控制器;以方向盘转角和侧向加速度为状态变量,设计了基于主动悬架侧倾抑制的前馈控制器;以侧倾角速度和侧倾角为状态变量,设计了基于反馈最优控制的侧倾稳定性控制器.建立了四轮驱动转矩和主动悬架力/力矩协调分配规则,通过联合仿真验证了控制策略的有效性.研究表明,轮毂电机差动驱动具有横摆稳定性控制能力和一定的侧倾辅助控制效果,联合主动悬架控制可以改善车辆的横摆-侧倾运动状态,大幅提高整车的空间稳定性.  相似文献   

17.
针对汽车主动前轮转向子系统和直接横摆力矩控制子系统的集成控制问题,基于快速终端滑模控制理论设计一种标定参数少和动态响应速度快的鲁棒集成控制器.首先,基于达朗贝尔原理建立包含车身侧向和横摆运动自由度的汽车动力学模型作为底盘集成控制模型.随后,基于快速终端滑模控制理论分别设计主动前轮转向控制律和直接横摆力矩控制律,并且通过汽车质心侧偏角相平面定义的平滑切换因子建立二者的切换规则,实现主动前轮转向子系统和直接横摆力矩控制子系统的平滑切换控制,并且将主动前轮转向子系统和直接横摆力矩控制子系统的主要工作区域分别控制在轮胎的线性区域和非线性区域.最后,结合车辆动力学仿真软件对所提出的鲁棒集成控制器的可行性和有效性进行验证,结果表明:所提出的底盘集成控制器可以同时兼顾汽车操纵稳定性和乘坐舒适性.  相似文献   

18.
为提高电动轮驱动车辆对不同路面的适应能力,基于模型预测控制提出一种将驱动电机的饱和输出力矩作为控制输入约束、将质心侧偏角作为输出约束的汽车横摆控制方法。建立2自由度的车辆状态空间模型作为预测模型,在线计算出跟踪理想横摆角速度所需的附加横摆力矩,通过调节相应驱动轮的驱动力来完成高效、简易的直接横摆力矩分配。将本文算法应用于四轮驱动的8自由度整车模型进行控制仿真,结果表明,该方法能够保证车辆在良好路面及湿滑路面上紧急转向和换道的操作稳定性,并能改善车辆循迹能力。  相似文献   

19.
为了提高电传动履带车辆的原地转向性能,从履带车辆原地转向动力学模型出发,提出一种基于双电机力矩控制的电传动履带车辆原地转向控制策略,首先增大电机力矩初始值以提高转向响应速度,进而将方向盘转角信号引入横摆角速度负反馈增益从而实现驾驶员对转向速度的控制.使用D2P快速原型开发系统构建了履带车辆原地转向“驾驶员+控制器”在环仿真平台,通过实时仿真对所提出的控制算法进行了验证,结果表明设计的控制策略正确有效,且具有良好的实时性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号