首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 313 毫秒
1.
电动汽车再生制动能量回收系统可以提高其续航里程。本文以某前驱型电动汽车为研究对象,分析了其在行驶过程及制动过程中制动力分配情况,综合考虑ECE制动法规、电机峰值转矩及电池充电性能等主要限制性条件,融合驾驶员制动强度判别特性,提出了一种适合本文电动汽车的再生制动力分配控制策略;基于MATLAB/Simulink软件平台进行了建模仿真,并将仿真结果与理想制动力分配策略进行对比。结果表明,该控制策略能够在保证制动效能的同时实现能量回收,能量回收效率达到34.179%,高于理想制动力分配策略。  相似文献   

2.
为进一步提高电动汽车的能量利用效率以改善其续驶里程,提出一种基于制动稳定性要求的电动汽车最优化能量回收制动力分配策略。通过对制动稳定性要求和ECE R13制动法规的分析,从理论上确定了纯电动汽车安全制动力的分配范围。考虑电机及蓄电池对能量回收的制约,在确定的安全制动范围内,分析了以最大限度回收制动能量为目标的制动力分配流程。将开发的制动控制策略嵌入ADVISOR 2002中,分别在城市道路工况和高速路工况下进行仿真。仿真结果表明:对比ADVISOR中缺省的制动力分配策略,提出的制动力分配策略在保证制动稳定性的要求下,回收能量和能量利用效率都有提高,城市道路工况能量回收提高幅度达163.4%。  相似文献   

3.
为解决电动汽车制动能量回收少的问题,提出了一个基于模糊逻辑的再生制动能量回收策略.可在考虑系统制动特性的基础上合理分配前后轮的制动力,分配摩擦制动和再生制动力,使制动能量回收最大化.基于该策略在Matlab/Simulink环境下建立了模糊控制模型,并嵌入仿真软件ADVISOR进行仿真.实验结果表明,该控制策略相对于ADVISOR本身的回收策略,制动能量回收效率提高30%以上,有效解决了制动能量回收少问题.  相似文献   

4.
提出一种基于制动强度的制动力分配策略。该策略可以使混合动力汽车在制动的过程中,既能保证制动的稳定性,又能最大限度地回收能量。首先在汽车制动动力学和相关法规的基础上,保证汽车稳定的前提下,确定了前、后轴制动力的分配区域;其次,在考虑电机特性等多种约束条件下,根据制动强度确定出最佳的制动力分配曲线,以使能量回收的效率最高;最后,将所提出的算法运用在MATLAB的电动汽车仿真软件中,在4种典型城市公路循环工况下进行了仿真;并且将实验结果与电动汽车仿真软件中原有的算法进行了比较。结果显示,该控制策略在保证汽车制动稳定的前提下,能够使汽车在制动过程中回收更多的能量。  相似文献   

5.
一种基于制动强度的制动力分配策略被提出,该策略可以使混合动力汽车在制动的过程中既能保证制动的稳定性又能最大限度的回收能量。首先在汽车制动动力学和相关法规的基础上,保证汽车稳定的前提下,确定了前、后轴制动力的分配区域。其次,在考虑电机特性等多种约束条件下,根据制动强度确定出最佳的制动力分配曲线,以使能量回收的效率最高。最后,将所提出的算法运用在MATLAB的电动汽车仿真软件中,在四种典型城市公路循环工况下进行了仿真,并且将实验结果与电动汽车仿真软件中原有的算法进行了比较,结果显示,该控制策略在保证汽车制动稳定的前提下,能够使汽车在制动过程中回收更多的能量。  相似文献   

6.
针对前轮驱动的电动汽车提出了一种基于模糊逻辑的制动力分配及能量回收控制策略。同时考虑了制动踏板行程、车速(电机转速)、电池荷电状态等对电动汽车制动力分配的影响,使动力分配更加合理,从而有效地回收制动能量,提高能量利用率。仿真结果表明了该控制策略的有效性和优越性。  相似文献   

7.
文章以电动汽车制动能量回收系统为研究对象,针对某双轴前驱单电机的电动汽车,设计了基于ECE法规和I线制动力分配的制动分配策略。在Simulink中建立了控制策略的仿真模型,将其嵌入到AVL Cruise软件中,选用NEDC(new European driving cycle)工况,对控制策略进行联合仿真,分析能量回收情况。在AVL转毂试验台上设计并完成了实车台架试验,验证了仿真结果的正确性。  相似文献   

8.
针对现行电动汽车再生制动的不足,提出一种新型电磁机械耦合再生制动系统(electromagnetic-mechanical coupled regenerative braking system,EMCB),并对其进行动力学分析和耦合机理研究;基于EMCB系统和理想制动力分配曲线提出一种制动力分配策略,构建EMCB系统模型和控制策略仿真系统,应用Car SimSimulink联合仿真平台,以有、无滑移率控制的紧急制动工况为例,对制动能回收、制动稳定性和制动舒适性等进行对比研究和验证分析。研究结果表明,所提出的制动力分配策略不仅实现中低制动强度下实际制动力分配曲线与理想I曲线高度吻合,还满足高制动强度下制动效能的需求,即保证了制动稳定性和制动舒适性,又提高了能量回收效率,有效增加了电动汽车的续驶里程,为进一步获得良好的防抱死制动系统(ABS)、电子制动力分配系统(EBD)、电子稳定系统(ESP)等控制性能奠定了基础。  相似文献   

9.
针对电动汽车混合制动系统,通过对整车制动动力学和ECE R13法规的分析,理论上确定了混合制动系统的安全制动区域.在此区域内,以充分回收车辆制动能量为目标,在满足ECE R13制动法规和整车制动稳定性的前提下,对于前后轴机械制动力分配固定的混合制动系统,提出了一种电动机制动力与摩擦制动力分配的优化方法.以工作模式切换点的坐标及制动力分配曲线的斜率为优化对象进行优化.此外,基于制动力分配影响因素多变的特点,设计了一种3参数输入的制动力分配模糊控制策略.分别建立新的制动控制策略模型嵌入到ADVISOR2002中进行仿真分析,从而验证改进控制策略的有效性.结果表明2种新的控制策略能够有效改善电动汽车的制动能量回收率.  相似文献   

10.
为提高电动汽车再生制动能量回收效果,提出一种基于制动强度控制的制动能量回收最优控制策略.在理想再生制动控制策略基础上,采用理论分析与仿真分析相结合的方法,利用汽车纵向动力学理论、MATLAB/Simulink和CarSim搭建联合仿真模型,研究制动能量回收与制动强度之间的关系,得到不同制动初始速度下实现能量回收最大化的最优制动强度.利用最小二乘法拟合最优制动强度变化规律,得到多项式拟合方程,制定包含制动力分配和最优制动强度控制的再生制动能量回收最优控制策略,并与理想再生制动控制策略进行仿真比较.结果表明:制动强度对制动能量回收效果影响较大,所设计的最优控制策略可以实现制动单次工况能量回收率最优.  相似文献   

11.
采用内置式永磁同步电机(interior permanent magnet synchronous motor,IPMSM)对电动汽车进行制动能量回收研究. 首先结合电机驱动与制动原理,提出应用于矢量控制技术中的最大转矩电流比控制策略(maximum torque per ampere,MTPA)、恒转矩弱磁控制策略、恒功率弱磁控制策略. 进而分析了电机在采用MTPA控制下的输入功率特性,求出最大回馈功率转矩线,并制定出合理的再生制动方法. 再结合电动汽车几种典型的制动力分配策略,提出采用最大化制动力分配策略. 最后在Simulink环境下搭建了整车模型对所提出的制动分配策略进行仿真,仿真结果验证了所采用的制动分配策略的有效性.  相似文献   

12.
混联式混合动力再生制动控制策略   总被引:1,自引:0,他引:1  
 再生制动系统是混合动力汽车和电动汽车特有的系统。该系统可将汽车制动过程中消耗的汽车动能和势能通过电动机发电的方式储存到电池中,在起动和加速过程中加以利用。本研究以长丰CJY6470E越野车为对象,在传统汽车制动理论的基础上,基于制动安全及制动效能,提出一种混联式混合动力汽车制动能量分配与再生制动控制策略。前后轴采用理想制动力分配,在分配好后,再对前后轴的再生和摩擦制动进行二次分配。进行二次分配时,主要考虑电机及电池的使用寿命,以车速及SOC作为电机再生制动功率影响因素,并通过对ADVISOR2002进行二次开发,建立整车模型,最后进行仿真。结果表明,采用所提出的再生制动控制策略可实现高效的制动能量回收,延长电池的使用寿命,且该策略具有可行性。  相似文献   

13.
一种改进的再生制动控制策略优化   总被引:1,自引:0,他引:1  
为了充分利用混合动力汽车的再生制动能量,提高整车燃油经济性,通过分析混合动力汽车再生制动系统的工作原理,依据理想的前后轮制动力分配曲线,基于比例控制策略,提出了一种并行制动力的分配策略,以对摩擦制动力和再生制动力进行合理分配.进而以平均再生制动力为目标,选取制动控制策略控制曲线上的关键点坐标为控制变量,对并行再生制动控制策略进行了优化设计.选取Saturn SL1为研究车型,在市区15工况下进行了仿真研究.结果表明,优化后的并行控制策略既可以满足制动安全性的要求又可以回收更多的制动能量.  相似文献   

14.
为了充分回收电动汽车制动过程中的制动能量,达到延长续驶里程和节约能源的目的,针对后驱纯电动客车进行了最佳制动能量回收控制策略的研究。在分析制动能量回收系统结构的基础上,考虑驱动电机和动力电池对电机制动力大小的限制,提出了一种最佳制动能量回收控制策略,该策略在保证制动安全的前提下,能回收尽可能多的制动能量。并基于Cruise和Simulink联合仿真平台,搭建了整车仿真模型,进行了仿真验证,仿真结果表明在中国典型城市循环工况中采用该制动能量回收控制策略,所回收的制动能量占制动过程中消耗的动能的比例可达24.7%,占制动系统所消耗的总能量的比例可达36.2%,节能效果明显。  相似文献   

15.
分析了电驱动车辆制动控制中能量回馈与制动稳定性之间的矛盾,提出了一种兼顾制动回馈控制及车轮防抱死控制的基于滑移率试探的电动汽车制动控制策略.在制动过程中根据滑移率是否在稳定区域,实时控制电机制动力与液压制动力,在保证制动稳定性的同时提高制动能量回收能力.该控制策略不依赖于路面辨识、制动力估计等复杂算法.在不同制动工况下的仿真结果表明: 采用该策略能获得接近最优的制动回馈效率,并在大制动力工况中实现了车轮的防抱死控制.  相似文献   

16.
李刚  杨志 《科学技术与工程》2020,20(4):1663-1668
伴随汽车的电子化与智能化发展,针对四轮独驱电动汽车驱/制动力独立可控的优势,提出了一种考虑驾驶员制动特性的四轮独驱电动汽车复合制动控制策略。通过应用车辆动力学仿真软件CarSim与MATLAB/Simulink软件建立车体模型、电机模型、电池模型和能量回收控制模型,并合理分配前后轴制动力矩和液压制动与电机制动的比例,通过两种不同循环实验工况对能量回收控制方法进行仿真实验验证。实验结果表明:所提出的复合制动控制策略可以有效分配汽车前后轴制动力矩,保证汽车制动稳定性,并获得较高的能量回收率,提高汽车行驶里程。  相似文献   

17.
汽车再生制动系统机电制动力分配   总被引:5,自引:0,他引:5  
对汽车制动能量再生系统的机电制动力分配控制方法进行了研究,以电机制动效能为依据划分制动模式,提出了常规液压制动与再生制动力(电机制动)协调控制方法,建立了相应的再生制动系统机电制动力分配控制策略模型,并且对控制模型进行了仿真分析.结果表明,该再生制动系统机电制动力分配控制策略能够保证汽车前后轴制动力分配随理想制动力分配I曲线变化,实现良好制动性能,制动过程中增加了电机制动率,从而提高了汽车制动能量的回收率.  相似文献   

18.
微型电动轿车制动能量回收及控制策略的研究   总被引:1,自引:0,他引:1  
分析了电动汽车制动能量转换和回收的制约因素,以某前驱动微型电动轿车为研究对象,在传统汽车制动理论的基础上,提出了电机再生制动力和摩擦制动力以及整车前、后轮制动力的联合控制策略;基于Matlab/Simulink和Advisor软件平台进行了系统建模和典型循环工况下的仿真,结果表明,该联合控制策略能够实现安全制动条件下的制动能量回收,且能量回收率达14.13%。  相似文献   

19.
为提高电动汽车再生制动能量回收率,针对后轮驱动的纯电动大客车提出了一种基于模糊逻辑的制动力分配及制动能量回馈控制策略,并结合实际工况利用Matlab/Simulink软件对控制对象进行了建模与仿真,仿真结果证明了该策略的有效性.  相似文献   

20.
针对混合动力汽车制动过程中机械制动力与电再生制动力的分配问题,在制动稳定区间内,以尽可能多地回收制动能量为目标,提出了一种最大化制动能量回收的并联式混合动力汽车再生制动控制策略。建立整车与制动控制器模型,仿真结果表明:与传统固定制动力分配比例的控制策略相比,本文所设计的并联式混合动力汽车的制动能量回收率提高了22.8%,燃油经济性提高了4.7%,CO排放量降低了4.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号