首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
纳米Fe3O4颗粒及其磁流体的制备与研究   总被引:1,自引:0,他引:1  
以氨水为沉淀剂,利用改进的化学共沉淀法制备粒径分布均匀的超顺磁性纳米Fe3O4颗粒.采用X射线粉末衍射仪(XRD)、傅里叶红外光谱仪(FT-IR)、振动样品磁强计(VSM)及透射电子显微镜(TEM)等方法对试样进行了结构与性能表征.结果表明:当n(Fe3+)/n(Fe2+)=1.75,温度为60℃,pH值为9时,超声波预处理制备的Fe3O4颗粒平均粒径在23 nm左右,饱和磁化强度(Ms)达到61.63 emu/g,具有超顺磁性.同时利用油酸钠和聚乙二醇4000(PEG 4000)的协同作用制得了稳定分散的纳米Fe3O4磁流体,当二者加入量与纳米Fe3O4颗粒质量比均为2.00∶3.48时,制备的纳米Fe3O4磁流体最稳定.  相似文献   

2.
通过溶剂热法,以FeOOH作为前驱体,以油酸作为表面活性剂,以十八烯为溶剂,制备了纳米Fe3O4颗粒,研究了油酸和FeCl3用量、反应时间对纳米Fe3O4粒子的大小以及分散性的影响.结果显示,FeCl3用量的增加和反应时间的延长均可使Fe3O4粒子粒径增大,油酸用量的增加会导致Fe3O4粒子粒径先减小再增大.利用XRD、TEM等手段对所制备颗粒的结构、形貌进行了表征,结果表明,所制备的纳米Fe3O4粒子属于反尖晶石结构.FeCl3用量为0.003mol,油酸用量为13.5mL时(即Fe3+/油酸约为1/15),在230℃反应12h得到结晶度较高,分散性良好,平均粒径比较小的纳米Fe3O4粒子.  相似文献   

3.
微乳液法制备Fe_3O_4纳米颗粒   总被引:2,自引:0,他引:2  
利用微乳液法制备纳米Fe3O4颗粒,以十二烷基苯磺酸钠为表面活性剂,甲苯作为油相,Fe3+与Fe2+水溶液和NaOH水溶液为水相形成W/O乳浊液,制备出单分散、高磁性的纳米级Fe3O4颗粒。经XRD、TEM、SEM分析Fe3+与Fe2+的摩尔比、乳化温度(T)、表面活性剂用量(m)、乳化时间(t)等参数对结果的影响。研究表明:当Fe3+与Fe2+摩尔比n(Fe3+)∶n(Fe2+)=1.75∶1、乳化温度T=80℃、表面活性剂用量m=1.0 g、乳化时间t=1.0 h时,产物粒径小,表现为超顺磁性。  相似文献   

4.
磁性纳米TiO2/Fe3O4的制备及光催化去除甲基紫的研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法,在磁性纳米Fe3O4表面包覆TiO2制备磁性纳米TiO2/Fe3O4复合光催化剂.用XRD、SEM、FTIR对其表面结构进行表征,结果显示Fe3O4表面被锐钛型的TiO2包覆,该磁性纳米光催化剂颗粒分布均匀,平均粒径为80~100 nm.将纳米TiO2/Fe304用着光催化剂去除水中的甲基紫染料,在紫...  相似文献   

5.
通过化学氧化沉淀法制备出球形和八面体形貌的Fe3O4纳米颗粒,对其进行XRD、Raman和SEM等表征。以合成的纳米Fe3O4催化H2O2氧化降解橙黄Ⅱ,考察了不同形貌Fe3O4的类Fenton催化活性。结果表明:使用化学氧化沉淀法制备Fe3O4,在低pH(8~9)条件下所得到的产物呈类球形,高pH(13)条件得到的产物为八面体形貌,其粒径均在210nm左右,并且结晶良好。Fe3O4/H2O2体系能有效降解橙黄II,并且催化反应主要发生在Fe3O4表面,最佳催化条件为pH 3.0、温度40℃。类球形Fe3O4纳米颗粒的催化活性高于八面体Fe3O4,并且Fe3O4具有良好的化学稳定性,重复使用4次效果稳定。  相似文献   

6.
本文采用均匀沉淀法制备了复合SnO2/TiO2纳米颗粒,重点考察了水解温度、水解时间、焙烧温度等制备条件对复合纳米颗粒性质的影响;在优化条件下制得的复合SnO2/TiO2纳米颗粒,利用XRD等对其结构、粒子粒径、晶型等进行了表征;并以对-二甲苯为目标污染物考察了其光催化性能。实验结果表明,控制水解温度维持在80℃时,水解时间为4h,得到SnO2/TiO2纳米颗粒,并且复合SnO2/TiO2纳米颗粒随焙烧温度的增加,其粒子粒径长大,晶型由锐钛矿向金红石型转变;同时复合SnO2/TiO2纳米颗粒的光催化性能随着焙烧温度的升高而降低。  相似文献   

7.
用化学共沉淀法制备了Fe3O4纳米微粒,并用聚乙二醇(PEG)为表面活性剂进行表面修饰,制备稳定的水基Fe3O4磁流体,考察加料方式、铁盐浓度、表面活性剂用量等条件对Fe3O4纳米微粒粒径的影响,并用红外光谱及X射线衍射表征磁性颗粒的化学成分和晶体结构.结果表明:加料方式是影响产物粒径和磁性的重要因素,反滴法制备的磁流体粒径更小,磁性更强;铁盐浓度越高,磁流体粒径越大;随PEG质量浓度增大,磁流体粒径先减小后增大;n(Fe3+)=n(Fe2+)=0.3 mol/L,c(PEG)=50 g/L为最适宜的反应条件;未经包覆的Fe3O4纳米粒子平均粒径为15 nm,PEG包覆后粒径约为20 nm,呈现出核-壳结构.  相似文献   

8.
以FeSO4·7H2O和NH3·H20为原料,以水合肼为模板剂和氧化剂,采用水热合成法制备出八面体Fe3O4纳米晶.用x-射线衍射(XRD)、扫描电镜(SEM)和振动样品磁强计(VSM)对样品的结构、形貌和磁性能进行表征.结果显示.实验制备的样品由粒径不同的八面体Fe3O4纳米晶(粒径为100 nm~1μm)组成,具有高饱和磁化强度和较低的矫顽力,分别为93.82 A·m2/kg和3 111.5 A/m.  相似文献   

9.
纳米二氧化钛颗粒的制备   总被引:6,自引:0,他引:6  
以硫酸法生产钛白的废弃物 (灰箱料 )为原料 ,制备纳米级锐钛型 Ti O2 .灰箱料经净化后得到硫酸钛溶液 ,以尿素为沉淀剂 ,采用均匀沉淀法制备纳米 Ti O2 颗粒 .详细研究了溶液 p H值、反应温度、Ti(SO4) 2 浓度、反应时间等工艺条件对 Ti O2 颗粒形态结构 (晶型、大小和分布 )的影响 ,形成纳米 Ti O2 制备工艺 .利用 TG- DTA、TEM、XRD分析等手段对颗粒进行表征 .制备的 Ti O2 颗粒纯度为 96 .4%,粒径为 2 0~ 30 nm,且分布均匀 ,为锐钛相结构 .  相似文献   

10.
纳米Fe3O4磁流体的制备及表征   总被引:1,自引:1,他引:0  
采用化学沉淀法制备纳米Fe3O4颗粒,并以聚乙二醇为改性剂,蒸馏水为载液,制备出固体质量分数为10%的纳米Fe3O4磁流体.用XRD研究Fe3O4纳米粒子的结晶情况;用FT-IR研究聚乙二醇改性前后Fe3O4粒子表面官能团的变化;用TEM研究Fe3O4颗粒的粒径大小及改性情况;用VSM研究Fe3O4粒子的磁性能.结果表明,制备的纳米Fe3O4为立方晶型,平均粒径在15 nm左右,聚乙二醇物理吸附在Fe3O4表面,Fe3O4颗粒几乎没有磁滞,具有超顺磁性.  相似文献   

11.
以二价铁盐为原料,利用环氧化物的胶凝或沉淀作用,以乙醇或水作为反应介质,在较低的温度下制备Fe3O4纳米粒子.表征结果表明,以H2O为溶剂可得到粒径在25~83 nm之间粒度分布较宽的Fe3O4纳米颗粒,而以乙醇为介质时,可得到粒度分布窄近单分散Fe3O4纳米粒子.由于该路线在制备纳米氧化物方面具有反应条件温和、工艺简单、原料价廉和易于规模化制备等优点,显示出其具有工业化前景.  相似文献   

12.
为了制备具有纳米多孔结构的磁性复合微球,采用正硅酸四乙酯(TEOS)和金属氯盐分别作为SiO2和铁氧体的前驱体,通过溶胶凝胶法制备将Fe3O4纳米颗粒分散于SiO2基体中的Fe3O4/SiO2磁性纳米复合微球,并用超临界干燥法对其进行干燥。利用X线衍射(XRD)、红外光谱(IR)、透射电镜(TEM)和振动试样磁场计(VSM)等分析测试手段对合成的材料进行性能表征。结果表明:复合粒子包覆完好、性能优良、分散性良好,制备颗粒的粒径为30 nm,比饱和磁化强度为84.09 A.m2/kg。  相似文献   

13.
导向药物用纳米Fe3O4磁性粒子的制备及表征   总被引:4,自引:0,他引:4  
采用化学共沉淀法先生成Fe3O4微粒,再将其分散于含有表面活性剂的水中的方法制备了纳米级Fe3O4磁性粒子.通过双层表面活性剂包覆可使Fe3O4磁性粒子稳定分散于水中而不聚集.在反应溶液pH值为11~12,温度为60℃及油酸钠为第1层表面活性剂,十二烷基苯磺酸钠为第2层表面活性剂的条件下制备了粒径为36nm的Fe3O4磁性粒子.实验结果表明:反应溶液pH值和表面活性剂是影响Fe3O4磁性粒子稳定性、粒径和饱和磁化强度的主要因素;利用XRD和IR证实了Fe3O4磁性粒子中存在Fe3O4和表面活性剂结构.所制备的纳米级Fe3O4磁性粒子可用作导向药物的磁载体.  相似文献   

14.
采用共沉淀法制备了包覆油酸钠的超顺磁性纳米Fe3O4粒子,主要研究了搅拌强度、加料方式、温度、料液浓度等因素对Fe3O4粒径的影响。对包覆油酸钠的纳米Fe3O4粒子采用葡聚糖进行表面处理后制备成靶向复合纳米粒子,考察了复合粒子的特异性浓聚效果。结果表明:在转速为7 000r/min的高速剪切机里,当温度为70℃,FeCl2的浓度为0.1mol/L时,所制备的单层包覆油酸钠的纳米Fe3O4粒子平均粒径为8nm,为单畴晶并具有超顺磁性。靶向纳米复合Fe3O4粒子可以特异性聚集于肿瘤部位,浓聚效果是生理盐水的2.13倍。  相似文献   

15.
本文采用均匀沉淀法制备了复合SnO2/TiO2纳米颗粒,重点考察了水解温度、水解时间、焙烧温度等制备条件对复合纳米颗粒性质的影响;在优化条件下制得的复合SnO2/TiO2纳米颗粒,利用XRD等对其结构、粒子粒径、晶型等进行了表征;并以对-二甲苯为目标污染物考察了其光催化性能。实验结果表明,控制水解温度维持在80℃时,水解时间为4h,得到SnO2/TiO2纳米颗粒,并且复合SnO2/TiO2纳米颗粒随焙烧温度的增加,其粒子粒径长大,晶型由锐钛矿向金红石型转变;同时复合SnO2/TiO2纳米颗粒的光催化性能随着焙烧温度的升高而降低。  相似文献   

16.
为制备硅油基Fe3O4磁流体,采用化学共沉淀法制备平均粒径为11 nm纳米Fe3O4颗粒,利用透射电子显微镜(TEM)、选区电子衍射花样(SAED)、X线衍射分析(XRD)、振动磁强计(VSM)等手段对试样的微观形貌、晶体结构以及磁性能进行表征。在测得无水乙醇中Fe3O4粉体的pH-Zeta电位图基础之上,研究了表面活性剂的类型、表面活性剂的加入量以及超声分散的时间对纳米Fe3O4颗粒分散性能的影响。结果表明:化学共沉淀法制备出的纳米Fe3O4颗粒为面心立方结构,颗粒表面光洁且呈现规则的圆球形,粉体的粒径分布较窄。随着超声时间的延长和表面活性剂使用量的增加,纳米Fe3O4颗粒在无水乙醇中的分散效果在特定点呈现最佳效果之后逐步变差,5种表面活性剂分散效果由好到差的顺序是:聚乙烯吡咯烷酮(PVP)、司班-80(SPAN-80)、司班-85(SPAN-85)、油酸(OA)、硅烷偶联剂KH-550。推荐纳米Fe3O4颗粒在无水乙醇中的分散工艺为:pH=7,PVP加入的质量分数3%,超声时间35 min,超声功率560 W。  相似文献   

17.
在反胶束体系中制备Fe3O4/SiO2核壳结构纳米粒子,并利用透射电子显微镜表征颗粒的结构和形貌.首先,在水体系中采用共沉淀法制备平均粒径为13 nm的Fe3O4纳米粒子,并用有机小分子柠檬酸对其进行表面修饰,加入氨水后形成稳定的Fe3O4胶体溶液.然后,将此胶体溶液作为水相滴加到Triton X-100/环己烷/正丁醇的表面活性剂/油相/助表面活性剂溶液体系中,搅拌后形成稳定的油包水反胶束体系.在反胶束内以氨水为催化剂,使正硅酸乙酯水解,从而获得SiO2包覆的Fe3O4核壳结构纳米粒子.实验结果表明,改变水和表面活性剂Triton X-100的浓度比ω,可以达到调控核壳结构纳米粒子形貌的目的.当ω=9时,可获得尺寸均匀、平均粒径约为100 nm的Fe3O4/SiO2核壳结构纳米粒子.  相似文献   

18.
采用化学共沉淀法以FeCl3·6H2O,FeCl2·4H2O为原料,氨水为沉淀剂,进行了9组正交试验,探索制备Fe3O4纳米颗粒磁性能的影响因素,利用振动样品磁强计(VSM)和透射电镜(TEM)对磁粉进行表征,利用正交表极差分析找出了最佳制备工艺条件:即A2B1C3D2,去离子水用量为200 mL(Fe3+为0.1 mol/L);表面活性剂用量为1 mL;氨水30 mL;[Fe3+]/[Fe2+]=1.75时Fe3O4颗粒饱和磁化强度为62.70 emu/g.  相似文献   

19.
微乳液法制备纳米CoFe2O4   总被引:9,自引:1,他引:9  
以TX-10 AEO9/正戊醇/环己烷/水为微乳体系,制备了CoFe2O4纳米颗粒.用X射线、扫描电镜对纳米样品进行了表征,并研究了表面活性剂与助表面活性剂的配比、盐浓度对微乳区域的影响.所制得的CoFe2O4纳米颗粒均匀,粒径为20~50 nm;最佳工艺条件为:表面活性剂TX-10 AEO9与助表面活性剂的质量比为2:1,盐溶液为 0.6 mol/L Fe3 和 0.3 mol/L Co2 的混合溶液及0.6 mol/L的NaOH溶液,回流温度为100 ℃,回流时间为2 h.  相似文献   

20.
Fe3O4磁纳米粒子的炔基修饰包括:纳米磁性Fe3O4粒子的制备,硅胶包覆Fe3O4磁粒子,氨基修饰硅胶包覆的磁粒子,炔基修饰氨基修饰后的磁粒子.并采用苄基叠氮与所制备的炔基修饰磁Fe3O4纳米粒子进行click环加成反应.通过SEM、BET、XRD和VSM分别对Fe3O4和硅胶包覆Fe3O4的表面形貌、比表面积、晶型结构和磁性能进行表征;利用UV-Vis对磁性Fe3O4粒子表面的炔基进行半定量分析;采用FTIR对产物表面基团做定性分析.结果表明,Fe3O4磁纳米粒子平均粒径为180±20 nm,粒子呈球  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号