首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Graphene is an interesting two-dimensional carbon allotrope that has attracted considerable research interest because of its unique structure and physicochemical properties. Studies have been conducted on graphene-based nanomaterials including modified graphene, graphene/semiconductor hybrids, graphene/metal nanoparticle composites, and graphene-complex oxide composites. These nanomaterials inherit the unique properties of graphene, and the addition of functional groups or the nanoparticle composites on their surfaces improves their performance. Applications of these materials in pollutant removal and environmental remediation have been explored. From the viewpoint of environmental chemistry and materials, this paper reviews recent important advances in synthesis of graphene-related materials and their application in treatment of environmental pollution. The roles of graphene-based materials in pollutant removal and potential research are discussed.  相似文献   

2.
Graphene attracts more and more scientists and researchers owing to its superior electronic,thermal,and mechanical properties.For material scientists,graphene is a kind of versatile building blocks,and considerable progress has been made in recent years.Graphene-based hybrid materials have been prepared by incorporating inorganic species and/or cross-linking of organic species through covalent and/or noncovalent interactions.The graphene-based hybrid materials show improved or excellent performance in various fields.In this review,we summarize the synthesis of graphene and graphene-based hybrid materials,and their applications in energy storage and conversion.  相似文献   

3.
石墨烯是一种具有独特二维晶体结构的新型碳纳米材料,具有优异的力学、电学、光学和热学性能,但是在溶剂中难以分散限制了其在很多领域的应用.功能化石墨烯提高了分散性,充分发挥了石墨烯的优良性能,在储能、生物医药、传感器和复合材料方面具有光明的应用前景.综述了石墨烯和功能化石墨烯的制备方法、优良性能及其各领域的应用.  相似文献   

4.
Recently,graphene has attracted numerous interests from both fundamental and applied fields due to its excellent mechanical,thermal,electrical conductivity and other novel properties.This review gives an overview of recent progress on hybridization modifications of graphene with carbon nanomaterials.Some example applications of graphene-based nanohybrids in polymer composites,optical and conducting materials,high performance electrolyte materials and as well as other functional materials are summarized and discussed.  相似文献   

5.
Graphene has unique physical properties,and a variety of proof-of-concept devices based on graphene have been demonstated.A prerequisite for the application of graphene is its production in a controlled manner because the number of graphene layers and the defects in these layers significantly influence transport properties.In this paper,we briefly review our recent work on the controlled synthesis of graphene and graphene-based composites,the development of methods to characterize graphene layers,and the use of graphene in clean energy applications and for rapid DNA sequencing.For example,we have used Auger electron spectroscopy to characterize the number and structure of graphene layers,produced single-layer graphene over a whole Ni film substrate,synthesized well-dispersed reduced graphene oxide that was uniformly grafted with unique gold nanodots,and fabricated graphene nanoscrolls.We have also explored applications of graphene in organic solar cells and direct,ultrafast DNA sequencing.Finally,we address the challenges that graphene still face in its synthesis and clean energy and biological sensing applications.  相似文献   

6.
Porous graphene: Properties, preparation, and potential applications   总被引:1,自引:0,他引:1  
Graphene has recently emerged as an important and exciting material.Inspired by its outstanding properties,many researchers have extensively studied graphene-related materials both experimentally and theoretically.Porous graphene is a collection of graphene-related materials with nanopores in the plane.Porous graphene exhibits properties distinct from those of graphene,and it has widespread potential applications in various fields such as gas separation,hydrogen storage,DNA sequencing,and supercapacitors.In this review,we summarize recent progress in studies of the properties,preparation,and potential applications of porous graphene,and show that porous graphene is a promising material with great potential for future development.  相似文献   

7.
石墨烯专利技术国际研发态势分析   总被引:2,自引:0,他引:2  
石墨烯是物理学、化学、材料科学等领域近年来的研究热点之一。因其集优异的电学、力学、光学、化学和热学等性能于一身,石墨烯已经成为一个备受关注、竞争非常激烈的新兴技术领域,近年来全球相关专利申请数量持续快速增长。该文基于DII数据库,利用TDA、Aureka等分析工具,对全球石墨烯相关专利进行了分析,揭示了全球石墨烯相关专利技术的研发和竞争态势。  相似文献   

8.
为了改善石墨烯的吸收性能,基于石墨烯的磁光效应,提出了一种采用磁性材料构成的光子晶体异质结构。该光学结构可使石墨烯实现多带吸收。吸收带的数目可通过改变光子晶体的周期数来调节。利用4×4传输矩阵法数值研究了该光子晶体异质结构的相关参数对石墨烯吸收率的影响。结果表明:石墨烯的吸收特性表现出一定的磁圆二色性。但通过调节费米能量,在外磁场的作用,左旋圆偏振光和右旋圆偏振光均可具有较高的吸收率。研究结果为偏振光学领域石墨烯基新型光子学器件的设计制作提供了理论依据。  相似文献   

9.
Graphene has been widely used in gas-sensing applications due to its large specific surface area and strong adsorption ability. Among different forms of graphene used as gas-sensing materials, reduced graphene oxide is one of the most convenient and economical materials to integrate with Si-based electronics, which is very important to graphene-based gas sensors. In addition, the stacking structure of graphene oxide flakes facilitates absorption and detection of gas molecules. Based on reduced graphene oxide, a highly sensitive and portable gas-sensing system was demonstrated here. Solution-based graphene oxide was cast on a chip like a TF memory card and then reduced thermally. A signal acquisition system was designed to monitor resistance variation as a sign of gas concentration. This miniature graphene-based gas sensor array demonstrates a new path for the use of graphene in gas-detection technologies. And the creation of a sensitive and portable graphene gas sensor also shows great potential in fields such as medicine and environmental science.  相似文献   

10.
应用于金属基双极板的石墨烯基涂层引起人们广泛的兴趣。综述了目前金属基双极板面临的问题,总结了已经报道的关于制备石墨烯基涂层的方法(化学气相沉积法、电沉积法、喷涂法、自组装方法)以及这些方法的优缺点。石墨烯优良的阻隔性能可以充当金属基双极板的钝化膜,对石墨烯进行改性或者对金属基双极板进行表面处理可以有效地改善石墨烯涂层与金属基双极板的相容性。导电聚合物可以有效地改善石墨烯涂层与金属基之相容性,并且能够填补石墨烯片层间的缝隙,提高涂层的致密度。导电聚合物能够以石墨烯为模板进行生长,降低涂层的表面粗糙度。最后提出对石墨烯改性以增强其与金属基双极板的相容性,以及发挥其与导电聚合物协同效应是未来的研究方向之一。  相似文献   

11.
Recent scientific interests reveal that graphene, with its flexibility, chemical stability, thermal conductivity,unique electronic band structure and optical transmittance, has emerged as the novel supporting material for nanocomposites for various applications. Research interests have flourished regarding decoration of conventional materials with modified graphene for achieving better optical properties. More concern is given for achieving improved photoresponse with graphene as the supporting material. The giant electron mobility and transparency of graphene enables the photo-induced electron transfer in the hybrid material, resulting in enhanced behaviour. Graphene oxide is able to effectively convert near infrared energy into heat, potentially acting as a photo-thermal switch. They act as potential candidates for photo-catalysts, sensors, photo-current switching,photo-detectors and other optical applications. In this review, we summarized the recent developments on fabrication and properties of graphene based photoresponsive materials.  相似文献   

12.
石墨烯应用于新型免疫传感器的开发已成为当前研究热点.将石墨烯与其它纳米材料复合,利用不同组分间的相互协同作用,使其应用效率进一步扩大.本文综述了近年来石墨烯复合材料在电化学免疫传感器中的应用,并展望了未来基于石墨烯复合材料的电化学免疫传感器的研究方向.  相似文献   

13.
Graphene and its derivative,graphene oxide (GO) have been substantively used as the main framework for dispersing or building nanoarchitectures because of their excellent properties in electronics and catalysis.The requirement to obtain superior graphene-metal hybrid nanomaterials has led us to explore a facile way to design 4-aminobenzenethiol/1-hexanethiolate-protected gold nanoparticles (aAuNPs)-functionalized graphene oxide composite (aAuNPs-GO) in solution.We demonstrate that when aAuNPs with amino groups are exposed to GO,well-dispersed coverage of Au nanoparticles are mainly observed on the edge of GO sheet.In contrast,when 1-hexanethiolate-protected gold nanoparticles (hAuNPs) without amino groups are exposed to GO,hAuNPs simply aggregate on the surface of GO.This indicates that amino groups located on the surface of Au nanoparticles are an essential prerequisite for attachment of nearly monodispersed aAuNPs.The strategy described here for the fabrication of aAuNPs-GO provides a straightforward approach to develop graphene-based nanocomposites with undamaged sheets structure and good solubility and also improve the conductivity of GO sheets evidently.  相似文献   

14.
石墨烯具有独特的结构和导热性质,在微电子领域也具有巨大的应用潜力。采用价力场方法研究石墨烯中的晶格振动,得出了石墨烯晶格振动的频率方程,计算出了石墨烯内光学声子与声学声子的色散曲线。探讨了石墨烯的导热机理,得出晶格振动的剧烈程度、石墨烯的尺寸、温度和基底等是影响石墨烯导热性能的主要因素。  相似文献   

15.
石墨烯吸附材料的制备与应用研究进展   总被引:3,自引:0,他引:3  
石墨烯具有独特的结构、优异的性能,在诸多领域有广泛的应用.石墨烯层的原子均为表面原子,其表面积非常大,是天然的吸附材料.其易于制备、成本低廉等优势使得石墨烯吸附材料成为水处理研究中的热点.石墨烯及其复合材料已经在重金属、染料、杀虫剂、抗生素、石油等污染物的治理方面得到应用.综述了石墨烯吸附材料的制备方法以及其在污水处理方面的应用.分析了污染物在石墨烯吸附材料上的吸附行为,并讨论了石墨烯与污染物的相互作用.着重关注官能团对石墨烯吸附材料性能的影响,从化学视角提出了设计高效石墨烯吸附剂的思路.  相似文献   

16.
Graphene features a shining star in the material sciences since its discovery in 2004. Biomedical application of graphene-family materials has been driven recently. In this paper, we overviewed the cutting-edge research in the biomedical application of graphene-based biomaterials, such as bio-sensing and bio-imaging, drug/gene delivery and scaffold for tissue engineering. We emphasized on the effect of graphene substrates on cellular behaviors of adhesion, proliferation~ and differentiation. The develop- ment of three-dimensional scaffolds based on graphene- based nanomaterials and the potential of these constructs in tissue engineering are discussed. The perspectives and challenges are also addressed.  相似文献   

17.
为了探究石墨烯作为润滑油添加剂在高温工况下摩擦学性能和抗黏着性能,采用四球摩擦磨损试验机对添加石墨烯的基础油进行摩擦磨损实验。用XRD对石墨烯进行表征,用基础油和添加不同质量分数的石墨烯润滑油进行对比。结果表明:在润滑油中添加石墨烯能显著提高摩擦副在高温工况下的摩擦学性能和抗黏着性能。在质量分数为0. 03%时,其摩擦系数约降低22. 5%,磨斑直径约减少48. 9%,抗黏着时间约增加44. 9%。  相似文献   

18.
石墨烯是目前发现的唯一存在的二维自由态原子晶体,是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2杂化碳的基本结构单元。石墨烯因具有独特的结构和优异的性能,吸引了不同领域科学家的关注,极具应用前景。对近几年石墨烯的主要制备方法进行了综述,对比了不同制备方法的优缺点,同时分析了石墨烯制备方法的发展趋势。  相似文献   

19.
Many efficient adsorbents and sensors based on graphene and functionalized graphene have been constructed for the removal and detection of environmental pollutants due to its unique physicochemical properties. In this article, recent research achievements are reviewed on the application of graphene-based materials in the environmental protection and detection. For environmental protection, modified graphene can adsorb heavy metal ions in a high efficiency and selectivity, and thus reduces them to metals for recycling. High adsorption capacity of graphene-based materials to kinds of organic pollutants in water was also presented. Several graphene-based sensors with high limit of detection were reported to detect heavy metal ions, toxic gases and organic pollutants in environment. Finally, a perspective on the future challenge of adsorbents and detection devices based on graphene is given.  相似文献   

20.
石墨烯由于具有较高的热导率、优异的力学性能、低的热膨胀系数以及良好的化学稳定性等特点,吸引了人们广泛的关注.综述了石墨烯与金属纳米复合材料的制备方法,包括自组装法、化学还原法、水热法、电化学沉积法和热蒸发法等,以及其在化学催化、超级电容器和导电薄膜等方面的应用研究进展,指出了石墨烯与金属纳米复合材料研究所存在的问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号