首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
研究了以Li4Ti5O12为负极,分别以LiCo0.5Ni0.5Mn0.5O2,LiMn2O4或LiFePO4为正极的锂电池体系. 先筛选不同厂家的正负极材料,然后再匹配成电池做循环性能研究. 测试表明,经筛选的LiCo0.5Ni0.5Mn0.5O2,LiMn2O4与LiFePO4三种材料分别与Li4Ti5O12组成电池的初始容量分别为963、931、960 mAh;500次充放电循环后容量保持率分别为96.56%、87.69%、98.1%. 其中LiCo0.5Ni0.5Mn0.5O2体系的初始容量最高,LiFePO4体系的循环性能最好. 3种不同正极材料的钛酸锂锂离子电池在85 ℃环境下搁置4 h,电池形变少于5%.  相似文献   

2.
利用原位水解和熔融扩散技术制备钛酸锂/硫(LTO/S)复合材料,并以该复合材料为正极、金属锂为负极,结合PEO基聚合物固体电解质组装全固态锂电池。研究结果表明,电池充放电过程中钛酸锂和硫作为正极活性物质均提供了高容量,电池循环稳定性也得到了显著提高;当复合正极中钛酸锂与硫质量比为1:3、活性物质质量分数为80%时,电池的容量发挥和循环稳定性同时达到最佳;在60℃和0.2C测试条件下,循环100圈后电池比容量保持在801 mA·h/g,库仑效率达到99%。  相似文献   

3.
磷酸铁锂电池寿命作为一项评价电池性能的重要指标,逐渐成为提高电动汽车性能的关键技术.为了研究日历老化和循环老化对电池容量衰减的影响,提高纯电动汽车动力电池性能.以某电动汽车的磷酸铁锂电池作为研究对象,对其施加不同的加速应力、不同温度条件和变充放电倍率等参数,计算锂电池容量的衰减结果.以Arrhenius方程求解为基本手段,建立电动汽车循环工况下充放电模型,对磷酸铁锂电池寿命进行预测.计算与实验结果表明:在相同条件下,循环老化速率约是日历老化速率两倍;在日历老化和循环老化交替条件下,温度从25℃上升到35℃后,磷酸铁锂电池寿命降幅达66.66%;建议在磷酸铁锂电池使用中尽量减小充放电倍率,配备动力电池冷却系统.  相似文献   

4.
为改善锰酸锂的储存性能,以七甲基二硅氮烷为电解液添加剂、自制的LiPF6/EC+DMC+EMC为电解液,研究不同温度下七甲基二硅氮烷对不同荷电态的锰酸锂电池储存性能的影响,并采用扫描电镜、EIS及充放电方法对电极表面形貌及电池电化学性能进行表征和测试.实验结果表明:锰酸锂电池在常温和高温储存1周后,处于放电态电池的循环性能均比处于半电态和满电态的电池的循环性能更优异.放电态的锰酸锂电池常温储存1月后,首次充放电效率为95.22%,2C倍率下循环200次后,容量保持率为96.74%,与电解液中未加七甲基二硅氮烷的锰酸锂电池相比,表现出较好的储存性能.  相似文献   

5.
目前商用的含易燃有机溶剂的液态电解质锂离子电池的安全隐患,随着电池容量的增大而增高。以固体电解质代替有机电解液开发全固态锂离子电池是提升电池安全性能的有力途径。全固态锂离子电池在理论上具有优异的循环特性和高的能量密度,在大型储能系统应用中具有广泛前景。如何提升电解质的离子电导率是发展全固态电池需要解决的关键性问题之一。本文就目前研究较为广泛的、离子电导率较高的硫代快离子导体(thio-LISICON)电解质的组分、结构、制备工艺和性能特征等做一个综合的分析和小结,重点分析并归纳了提高材料性能的作用机理,为后续对固体电解质材料的深入研究提供参考。  相似文献   

6.
本文通过对三元软包锂电池进行80 ℃高温热处理,模拟研究高温环境对三元软包锂电池热安全性能的影响。对比分析了高温对软包锂电池热失控温度、电压和dV/dQ曲线等的影响。实验发现,随着热处理次数增加,电池充放电容量依次降低,其中第三次热处理对电池容量影响最显著。电池内部结构受损程度逐渐增加,电池内部结构变得脆弱,热失控时间逐渐提前。热失控危害性降低,热失控时电池最高温度依次下降。  相似文献   

7.
骆真  曹宏  薛俊 《应用科技》2023,(5):169-174
为进一步优化多孔类核壳结构硅碳负极材料的制备方法,通过“两步喷雾造粒、一步碳化成型”法制备出了具有石榴结构状的锂离子电池硅碳负极材料。采用X射线衍射(X-ray diffraction, XRD)、扫描电子显微镜(scanning electron microsope, SEM)和热重分析(thermogravimetric analysis, TGA)等方法对材料的物理性质进行了表征。为提升复合材料的导电性与结构稳定性,提升其充放电性能,将碳纳米管(canbon nano tube, CNT)导电剂与鳞片石墨与复合材料进行了复合,得到了Si@Pore-C/CNT/G@C复合材料。该材料在0.1 C的电流密度下,在50次充放电循环后具有高达95.6%的容量保持率,并且在经过97次较长循环后仍具有82.8%的容量保持率。所提出的制备方式简单高效,具有量产的潜力,无需使用酸碱刻蚀或其他牺牲模板,是一种绿色、高效的制备方案。  相似文献   

8.
针对储能系统中锂电池充放电程度不一致而造成的电池过放/过充,从而导致电池使用寿命缩短的问题,提出了一种分布式储能系统的荷电状态(SOC)均衡控制方案。首先,采用单体电池电源模块串联的分布式储能结构,以单体锂电池估算SOC为控制对象;然后,设计基于SOC均衡的加权因子分配公式,通过对电源模块分配不同的加权因子来调整各电源模块的占空比,从而动态调节各单体锂电池的充放电速率,实现分布式储能系统的SOC均衡控制,改变了传统电池组组内、组间两级均衡控制形式,消除了组内单体锂电池间能量传递造成的功率损失;最后,采用负载电压调节与SOC均衡的双闭环控制结构,保证均衡过程中系统运行的稳定性。仿真结果表明:所提出的均衡控制方法能够有效实现储能系统的动态均衡控制,与SOC比例均衡控制方法相比均衡时间缩短了47%。  相似文献   

9.
针对锂离子动力电池低温环境使用问题,提出了一种基于可变截止电压的电池加热方法。在低温环境下,以某一恒定充放电电流倍率对电池进行多个充放电循环,以截止电压作为每一个充放电循环的结束条件,在每一个充放电循环结束后,将截止电压增加某一梯度值并进入下一个充放电循环,利用电池充放电时内阻产生的热量对电池进行加热,直至电池达到目标温度。对额定容量为1Ah的18650磷酸铁锂电池进行低温加热实验,结果表明,在环境温度为-10℃的条件下,截止电压变化梯度为0.05V,充电电流为2C,放电电流为4C,能够实现21min内电池从-10℃加热到5℃。  相似文献   

10.
为克服锂/硫电池的正极材料单质硫的导电性差、放电产物的部分溶解导致电池性能下降等问题,设计并制备了一种新型正极材料多硫化碳炔。通过核磁共振、拉曼光谱、X-射线及SEM等手段对其进行了研究,并得到其形态及结构信息,证明材料具有“主链导电、侧链储能”的结构。通过充放电性能测试及循环伏安测试对其电化学性能进行了研究,结果表明该材料具有较高的充放电效率与良好的循环性能,0.4mA/cm2的放电条件下60次循环后比容量可以达到400mAh/g,充放电效率接近100%。  相似文献   

11.
可充电的水系电池由于价格低廉、电极材料来源丰富和使用安全等优势而得到研究者们广泛关注.但是其在实用中还存在着能量密度和功率密度不足的问题.该研究以针状NiCo2O4纳米棒为水系电池正极材料,以Fe3O4纳米棒为负极材料组装成了一种NiCo/Fe电池储能器件.该储能器件表现出了优异的可充放电性能,在1.2 kW/kg功率密度下(1 A/g),其最高容量可达207.7 Wh/kg(173 mAh/g),在24 kW/kg(20 A/g)的高速率充放电速率下,其容量仍能保持70.8 Wh/kg(59 mAh/g).此外,得益于正负电极材料均为阵列结构并与基底结合牢固,该储能器件表现出优良的循环性能,即在电流密度为5 A/g下经过2 000次循环后容量仍保持近80%.  相似文献   

12.
本文介绍了全钒氧化还原流体电池及其结构和充放电机理。该电池是一种新型储能材料。它用VOSO4溶液作电极活性材料。一系列充放电试验结果表明,该电池具有良好的电化学性能。  相似文献   

13.
电动汽车锂离子电池低温加热方法研究   总被引:5,自引:0,他引:5  
为提高锂离子动力电池的低温充放电性能,以锰酸锂80A.h电池单体为研究对象,提出了宽线金属膜的加热方法,并对电池单体进行低温充放电实验,建立电池加热模型,采用等效电池加热实验验证模型的正确性,对233K低温环境下的电池单体进行加热和放电实验.实验结果表明,采用宽线金属膜加热法可显著提高电池的低温性能.  相似文献   

14.
采用机械液相活化结合喷雾干燥法制备LiFePO4/C正极材料,并用该材料制备容量为10A.h的动力电池.通过X-射线衍射、扫描电镜、振实密度和电导率测试对材料的物理性能进行综合分析,采用循环伏安、循环寿命和不同倍率下充放电性能测试对电池进行电化学研究,由过充、冲击、针刺等实验检测电池的安全性.结果表明:该材料晶型完整、颗粒均匀、振实密度高、导电性好;制备的单体动力电池在1.0倍率下循环150次后容量保持率仍然超过98%,大倍率充放电性能好,且安全性较高.  相似文献   

15.
采用Hummers法和熔融扩散法结合的方法制备了氧化石墨烯@硫(GO@S)复合正极材料,研究了此复合正极对锂硫电池电化学性能的影响.测试结果表明,GO@S复合正极大幅度提高了电池的比容量、有效改善了电池的倍率性能和循环稳定性.在0.1 C倍率下,初始放电容量高达1 044 mA·h/g;0.5 C倍率下经过100次的充放电循环后,库伦效率为96%,容量保持率为78.5%.  相似文献   

16.
锰酸锂电池循环性能的改进   总被引:1,自引:1,他引:0  
采用商品化的LiMn2O4和石墨作为正负极材料制作锰酸锂电池,并利用XRD和SEM表征LiMn2O4原料的结构和形貌.研究不同正负极料量比对电池性能的影响,对各个料量比电池循环之后的正极进行XRD分析.研究结果表明:LiMn2O4容量随着正负极料量比的增大而增大,最高达到106 mA·h/g,而电池的循环性能随着正负极料量比的减小而改善,正负极料量比为2.35时,170次循环后电池容量保持率为87.3%,并且在循环过程中,电池循环性能随着循环的进行而改善;循环后的LiMn2O4晶胞发生收缩,LiMn2O4的结构稳定性提高,并且其晶胞收缩程度随着正负极料量比的减小而增加.  相似文献   

17.
采用固相焙烧法制备正极材料钴酸锂LiCoO 2 ,并采用异丙醇铝(AIP)对其进行表面包覆,通过XRD、SEM、EDS mapping和电池充放电测试研究了AIP包覆量对材料结构和电化学性能的影响.电化学性能测试表明,AIP包覆可有效改善材料的循环性能,提高材料的放电比容量、库仑效率和倍率性能.相比于未包覆的LiCoO 2 样品,包覆量为0.1%的LiCoO 2 样品,具有最优异的电化学性能,在0.2C下的首次放电比容量提升至176.8 mAh/g,库仑效率高达97.2%;在1.0C下经50次循环后容量保持率为96.2%.  相似文献   

18.
采用溶剂挥发法,以丙酮和DMF做混合溶剂制备PVDF-HFP/PMMA聚合物电解质,通过X射线衍射、热失重分析、交流阻抗、恒流充放电循环及倍率充放电等测试手段,考察了PMMA的添加量对聚合物电解质性能的影响.研究发现当PMMA的添加量为50%时,聚合物电解质表现出最佳性能,室温离子电导率从0.26 m S/cm提升到1.35 m S/cm,以Li Co O2作正极材料,锂片作负极材料组装的聚合物锂离子电池初始容量从80.1 m Ah/g提升到143.6 m Ah/g,在0.2 C倍率条件下,50个循环后容量保持率还能达到80%,表现出优异的锂离子电池性能.  相似文献   

19.
为了维持微网中各发电单元输出功率与负荷功率的瞬时平衡,需要储能单元频繁地充放电,对传统大功率锂离子电池的内部温度等产生较大的负面影响,导致电池容量积累性亏损并在短时间内快速下降,缩短其使用寿命。文中提出了适用于微网的超导磁储能与锂离子电池混合储能结构,将SMES与锂离子电池通过各自DC/DC变换器并联到直流母线,并推导了混合储能的简化模型,利用滑动平均滤波法将波动功率高频部分分配给SMES,低频波动部分分配给锂离子电池。根据不同的SOC工作状态(正常,警告,报警等),动态调节滤波时间常数,从而调节功率分配。该HESS在风力发电中的仿真试验验证了所提出的混合储能拓扑及滑动平均滤波法动态分配策略的有效性。  相似文献   

20.
锂离子电容器作为一种新型储能元件,兼具锂离子电池与双电层电容器的优点。颗粒状的Li_4Ti_5O_(12)(LTO)因其稳定的结构、良好的循环性能、较高的安全性能等优点,成为较理想的锂离子超级电容器(LIC)负极材料。但因其较差的导电性,使其在大电流充放电过程中容量衰减较快。为改善这一性能缺陷,在制备LTO过程中进行碳源掺入,导致制备的含碳颗粒状LTO具备优良的电子、离子电导率。为进一步改善LTO颗粒间的导电性,使用含SP/C、SP/G、SP/C/G的混合导电剂分别制成不同极片(记为LTO-C、LTO-G和LTO-GC)。在充放电过程中(电流密度为2~20 C),3种半电池LTO-G、LTO-C和LTO-GC的比容量分别是162 mAh/g~102 mAh/g、165 mAh/g~110 mAh/g和179 mAh/g~121 mAh/g。在大电流密度下LTO-GC较高的容量保持率说明GC改良的LTO颗粒立体导电网络对其倍率性能及电化学可逆性能的提高至关重要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号