首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用二-2-乙基己基磷酸(HDEHP)和P2O5混合物做萃取剂^241 Am^3+为示踪剂,做了从硝酸溶液中液-液萃取Am的实验研究。完成了硝酸浓度和震荡时间的变化影响^241 Am^3+萃取效率的条件实验。发现P20,的浓度≥0.0125mol/L时,^241 Am^3+ 的萃取效率大干98%;震荡时间≥30s,两相便可达到萃取平衡。分别用二乙撑三胺五乙酸(DTPA)-乳酸以及N%CO3溶液对^241 Am^3+进行反萃取。结果显示N%CO,溶液能给出很高的反萃效率。而且,在很短的震荡时间内,两相都能达到反萃平衡。  相似文献   

2.
液-液萃取从Th中分离Ac   总被引:1,自引:0,他引:1  
用234Th、228Ac和139Ce 3做示踪剂,二(2-乙基己基)磷酸做萃取剂,研究了初始HNO3浓度对234Th、228Ac和139Ce 3萃取效率的影响。发现在广泛的酸度范围内,234Th均能被定量地萃取;当HNO3浓度大于2.0mol/L时,228Ac和139Ce3 的萃取效率下降到2%以下。研究了震荡时间对234Th萃取效率的影响,数据显示,1min便可达到萃取平衡。从含大量钍的溶液中分离痕量Ac的实验结果显示,用二(2-乙基己基)磷酸-苯的萃取流程,可使Ac与大量的钍分离,同时Ac的损失又较小。  相似文献   

3.
含铜细菌浸出液萃取   总被引:1,自引:1,他引:0  
采用萃取剂LIX984N研究了3种含铜细菌浸出液(KLTK,HTS和LW)的萃取效果.萃取剂LIX984N萃取铜的最佳条件:pH为2.5,有机相与水相的体积比为3∶2,萃取剂的质量分数为20%,萃取原液Cu2+的质量浓度为3 g.L-1,萃取时间为11 min.实验表明经过一级萃取后,萃取率在99%以上,一级反萃率在95%以上,二级反萃率在97%以上,萃取效果明显.  相似文献   

4.
由N235与路易斯碱三辛基氧膦(TOPO)组成协同萃取体系,对碱性氰化浸金贵液中金(I)协同萃取和反萃进行了研究.研究了有机相中N235含量、水相平衡pH、相比等因素对金(I)萃取率的影响,考察了反萃液中氢氧化钠液浓度对负载金有机相的反萃效果.结果表明,采用有机相为10%+10%协萃剂TOPO+80%煤油的协萃体系,对pH=9~10和初始金(I)质量浓度ρO=10.87 mg/L碱性氰化浸金贵液进行萃取时,经一级萃取后,萃取率可高达98%左右;同时,采用0.05~0.1 mol/L的氢氧化钠溶液可对负载有机相进行反萃,反萃率达到91%以上.  相似文献   

5.
针对现行的湿法炼锌渣中提取锗的研究现状,采用新型萃取剂HBL101从锌置换渣的高酸浸出液中直接萃取锗,考察了料液酸度、萃取剂体积分数、萃取温度、萃取时间和相比对萃取的影响以及氢氧化钠质量浓度、反萃温度、反萃时间和反萃相比对反萃的影响,并对萃取剂转型条件进行了研究.实验表明:有机相组成为30% HBL101+70%磺化煤油(体积分数)作为萃取剂,料液酸度为113.2 g·L-1 H2 SO4,其最佳萃取条件为萃取温度25℃,萃取时间20 min,相比O/A=1:4.经过五级逆流萃取,锗萃取率达到98.57%.负载有机相用150 g·L-1 NaOH溶液可选择性反萃锗得到高纯度锗酸钠溶液,其最佳反萃条件为反萃温度25℃,反萃时间25 min,相比O/A=4:1.经过五级逆流反萃,反萃率可达到98.1%.反萃锗后负载有机相再用200 g·L-1硫酸溶液反萃共萃的铜并转型,控制反萃温度25℃,反萃时间20 min,O/A=2:1.经过五级逆流反萃,铜反萃率可达到99.5%并完成转型,萃取剂返回使用.  相似文献   

6.
由N235与路易斯碱三辛基氧膦(TOPO)组成协同萃取体系,对碱性氰化浸金贵液中金(Ⅰ)协同萃取和反萃进行了研究.研究了有机相中N235含量、水相平衡pH、相比等因素对金(Ⅰ)萃取率的影响,考察了反萃液中氢氧化钠液浓度对负载金有机相的反萃效果.结果表明,采用有机相为10% 10%协萃剂TOPO 80%煤油的协萃体系,对pH=9~10和初始金(Ⅰ)质量浓度ρo=10.87 mg/L碱性氰化浸金贵液进行萃取时,经一级萃取后,萃取率可高达98%左右;同时,采用0.05~0.1 mol/L的氢氧化钠溶液可对负载有机相进行反萃,反萃率达到91%以上.  相似文献   

7.
用磷酸三丁酯(TBP)和煤油组成溶剂萃取体系有机相,对煤制气洗涤过程中产生的高浓度含酚废水进行了萃取和反萃处理研究.探讨了影响苯酚萃取的因素如废水pH和TBP体积分数,考察了反萃剂氢氧化钠溶液质量分数对反萃效果的影响;同时,对萃取和反萃过程中有机相的重复使用问题进行了研究.实验结果表明,当废水的pH=3~6时,一级萃取率可达90%以上,CODCr去除率达到80%以上;二级萃取率达到40%左右,苯酚总的萃取率达到95%以上;当氢氧化钠溶液质量分数为4%~10%时,反萃率可达80%以上;TBP-煤油有机相可在萃取和反萃的过程中多次重复使用.  相似文献   

8.
LIX84和LIX54混合萃取剂从氨性溶液中萃取锌的研究   总被引:1,自引:0,他引:1  
以Zn2+-NH3-Cl--H2O氨性溶液为水相,考察LIX84和LIX54混合萃取剂相对含量、相比、被萃水相中锌离子浓度、总氨浓度和pH对锌萃取率的影响.借助计算软件GEM-Selektor从理论上分析被萃水相pH对锌萃取率的影响.研究结果表明:相比、被萃水相总氨浓度和pH是影响锌萃取率的主要因素;被萃水相是总氨浓度为3 mol/L、锌离子质量浓度为3 g/L的氨性溶液,当NH3与NH4CI的物质的量比n(Nn3):n(NH4Cl)为3、相比为1:1时,于40℃振荡30min,单次锌萃取率可达76.42%.  相似文献   

9.
二(2-乙基己基)磷酸萃取钐的研究   总被引:1,自引:0,他引:1  
二(2-乙基己基)磷酸(简称P_(204)是一种酸性磷型萃取剂。本文采用P_(204)的正己烷溶液从盐酸体系中萃取钐,确定了其萃取机理和萃合物的组成,测定出表观萃取平衡常数;并用P_(204)的磺化煤油溶液对钐的萃取条件及负载有机相的反萃条件进行了筛选。实验表明:当起始水相的PH值等于3.86时,萃取率达99.54%,而采用2N盐酸进行二级反萃,反萃率高达99.68%。  相似文献   

10.
以二(2-乙基己基)磷酸(HDEHP)为萃取剂,CCl4为稀释剂,从ZnSO4水溶液中萃取Zn2+,探讨萃取时间、萃取剂浓度、Zn2+浓度和萃取温度对萃取效率的影响.结果表明,萃取过程能快速达到平衡,萃取效率随HDEHP浓度和萃取温度的增加而增加,随Zn2+浓度的增加而减少;萃取过程为吸热反应,萃取吸热焓为34.27kJ/mol;主因素分析结果表明Zn2+浓度对萃取过程影响最大.  相似文献   

11.
用放射性同位素198Au示踪法研究了无机盐NH4SCN,NaClO4等对季铵盐载金有机相的反萃,考察了反萃剂的浓度、有机相与反萃剂的体积比等对反萃率的影响.讨论了有机相反萃后继续萃取的问题.结果表明,NH4SCN,NaClO4在较高浓度时都是很好的反萃剂,反萃效率符合高氯酸盐效应,反萃后有机相具备连续萃取的能力.  相似文献   

12.
实验发现的协萃混合物[二(2-乙基己基)膦酸和2-乙基已基膦酸的煤油混合物]对于从氯化锌溶液中萃取铁(Ⅲ)具有相当高的选择性。本文主要研究了稀释剂、水相酸度、接触时间、温度及反萃剂浓度等参数对铁(Ⅲ)萃取和反萃取的影响。其最佳工艺条件为:水相酸度pH=0.5:萃取和反萃取温度为30~40℃;反萃剂盐酸浓度为6mol/L;萃取和反萃取级数分别为2~3级和3~4级。此外,测定了有机混合物的最大载荷(35.22g/L)及萃取剂的循环使用的效率同题。最后对协萃的机理进行了初步探讨,得出了协萃图,算出了协萃系数(R=3.82)。  相似文献   

13.
采用Lix973作萃取剂,硫酸作反萃剂,从氨性浸出液中萃取分离铜和钴。研究萃取剂体积分数、有机相与水相的体积比(相比)、混合时间、反萃剂质量浓度、反萃相比和反萃时间对萃取分离铜和钴的影响,确定获得Lix973萃取分离铜的优化条件。研究结果表明最佳萃取铜的条件为:室温下有机相与水相的体积比1:1,混合时间2 min,萃取剂Lix973体积分数5%。在此实验条件下,铜的一级萃取率达到99.29%;最佳反萃铜的条件为:室温下反萃相比2:3,反萃时间1 min,硫酸质量浓度160 g/L。在此实验条件下,铜的一级反萃率为96.13%。  相似文献   

14.
研究了三正辛胺从石煤酸浸液中萃取钒的工艺过程 ,从萃取和反萃的 p H值、相比、有机相组成、澄清时间等方面进行了详细试验。研究表明 :用三正辛胺萃取钒时 ,其萃取率可达98%以上 ;而且易反萃 ,用 0 .5 M Na2 CO3反萃时 ,反萃率为 99.9%。经萃取后 ,浸出液中的钒可由每升几克富集到每升数十克以上 ,有利于后续的提钒工艺。  相似文献   

15.
采用 N72 0 7从无机酸体系中萃取钼 ,考察了影响萃取平衡的主要因素 ,筛选出反萃取条件。萃取钼的最佳条件为起始水相 p H值为 2 .3,萃取剂浓度为 0 .0 1m ol/L ,经二级错流萃取 ,萃取率可达 99.40 % ,而采用 0 .5 mol/L的氢氧化钠反萃负载有机相 ,一级反萃率可达 10 0 % ,并经紫外可见光谱确证 ,其萃取钼的机理属于离子缔合物萃取体系的阴离子交换反应  相似文献   

16.
用放射性同位素198Au示踪法研究了乙二醇(GLY)、二羟乙基硫醚(DGTE)等对季铵盐载金有机相的反萃,考察了反萃剂的浓度、有机相与反萃剂的体积比(R)、加入乙醇等对反萃率(S)的影响.讨论了有机相反萃后继续萃取的问题.结果表明,GLY,DGTE在较高体积分数时都是很好的反萃剂.当GLY体积分数大于90%、DGTE体积分数大于70%时,其反萃能力均可达到90%.反萃剂中不含乙醇时,反萃后有机相具备连续萃取的能力.实验还发现,NaClO4和NH4SCN也有很好的反萃作用.  相似文献   

17.
萃取-反萃取以提取酸溶液中的镓   总被引:2,自引:1,他引:1  
以磷酸三丁酯为萃取剂,NH4Cl为反萃剂,系统探究了不同萃取环境下萃取和反萃取效果,实验结果表明,在6 mol/L的盐酸体系中,将体积分数为30%的TBP,按1∶1的相比,震荡6 min以萃取25 mg/L的镓溶液,萃取率达98.61%~98.69%,硫酸-氯化钠体系也可实现良好的萃取效果,此外还考虑了其他离子的干扰作用。而在pH=5.5,反萃取剂浓度为2.5 mol/L,反相比为2∶1的条件下,反萃取率可达100%,优化了萃取-反萃取条件,实现了镓的高效回收。  相似文献   

18.
N7207萃取钼的研究   总被引:1,自引:0,他引:1  
采用7207从无机酸体系中萃取相,考察了影响萃取平衡的主要因素,筛选出反萃取条件。萃取钼的最佳条件为起始水相pH值为2.3,萃取剂浓度为0.01mol/L,经二级错流萃取,萃取率可达99.40%,而采用0.5mol/L的氢氧化钠反萃负载有机相,一级反萃有机相,一级反萃率可达100%,并经紫外可见光谱确证,其萃取钼的机理属于离子缔合物萃取体系的阴离子交换反应。  相似文献   

19.
研究锂电池浸出液中钴、镍、锂的P507萃取分离方法,通过直接采用草酸反萃富钴有机相得到草酸钴产品.实验对含有53.8 g/L 钴的料液进行萃取.研究结果表明最佳萃取条件如下:有机相组成(体积分数)为25%P507+5%TBP+70%磺化煤油,萃取剂皂化率为70%,水相初始pH为3.5,常温下萃取10 min,有机相与水相的相比ψ(O)/ψ(A)为1.5:1.0,通过3级错流萃取,钴的萃取率达99.5%,锂和镍的萃取率仅为4.9%和3.1%:P507萃取分离钴、镍、锂过程的焓变分别为: -2.043,-0.812和1.586 kJ/mol;直接使用草酸反萃富钴有机相,得到分相良好的油一水一固3相,最优反萃工艺为:0.03 g草酸/mL富钴萃取剂,温度为40℃,ψ(O)/ψ(A)=1.0:2.5,钴的反萃率达99.5%,反萃后的萃取剂和水相均可再生循环利用.  相似文献   

20.
利用三辛基甲基氯化铵为萃取剂,考察了不同烷烃稀释剂与不同醇类助溶剂组合对废水中柠檬酸镍的萃取效果及反萃取剂盐酸溶液对镍的反萃取效果.探讨了废水pH、萃取剂质量浓度、助溶荆体积分数、相体积比(废水相与有机相体积比)、萃取时间及反萃取剂浓度等工艺条件对萃取效果的影响.结果表明,煤油与癸醇组合对废水中柠檬酸的镍萃取效果最佳.在废水pH为9.00,萃取剂质量浓度为35%,助溶剂体积分数为20%,水相与有机相体积比为1时,室温下萃取30min,萃取率可达75.41%;用0.5mol/L盐酸溶液对萃取反应后有机相中的镍进行反萃取,反萃取率可达94.50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号