首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
本文研究了以二(2—乙基已基)亚砜为萃取剂、煤油为稀释剂,对铊(Ⅲ)盐酸体系的萃取性能。实验结果表明:在较高酸度下使用该萃取剂能定量萃取铊(Ⅲ);酸度、氯离子浓度对萃取有较大影响;该萃取剂对铊(Ⅲ)的萃取平衡时间短,易分相;用醋酸铵溶液或氢氧化钠溶液作反萃剂时,可使萃取剂反复使用。即二(2—乙基已基)亚砜的煤油溶液具有良好的再生性能。  相似文献   

2.
用溶剂萃取的方法从镍钼矿冶炼渣酸浸液中回收镍并制备氧化亚镍粉末.研究结果表明:有机相中萃取剂2-乙基己基膦酸-单-2-乙基己基酯(PC-88A)的添加量、相比(即水与油的体积比)、萃取时间、料液的pH对镍萃取有显著的影响,温度对镍的萃取影响很小.最佳萃取工艺条件如下:萃取剂(PC-88A)体积分数为30%,相比为3:1,料液的pH为6.7,萃取时间为3 min,萃取温度为30℃,在此最佳条件下进行二级错流萃取,镍的萃取率为99.6%.反萃的最佳条件如下:相比为1:3,盐酸的浓度为2 mo1/L,反萃时间为3 min,在此最佳条件下,一级镍的反萃率为99.3%.用反萃得到氯化镍先制备草酸镍,然后煅烧,得到纯度达99%氧化亚镍粉末.  相似文献   

3.
本文以正辛烷为稀释剂,研究了2-乙基己基膦酸单2-乙基己基酯从硝酸溶液中萃取铜(Ⅱ)的动力学过程。考察了水相酸度、铜(Ⅱ)浓度、萃取剂浓度以及温度和介质等因素对萃取速率的影响,同时对萃取反应机理进行了讨论  相似文献   

4.
本文在298±1K下,用恒界面池法研究了2-乙基已基膦酸单(2-乙基己基)酯(HEH[EHP],HA)-正庚烷-lmol·dm~(-3) (Na,H)NO_3体系萃取Fe(Ⅲ)的动力学。用电位法检测水相中Fe(Ⅲ)浓度随时间的变化。实验表明,苹取速控步骤发生在两相交界处,并考察了水相酸度,苹取剂浓度及介质浓度对初始正向萃取速率的影响。  相似文献   

5.
针对现行的湿法炼锌渣中提取锗的研究现状,采用新型萃取剂HBL101从锌置换渣的高酸浸出液中直接萃取锗,考察了料液酸度、萃取剂体积分数、萃取温度、萃取时间和相比对萃取的影响以及氢氧化钠质量浓度、反萃温度、反萃时间和反萃相比对反萃的影响,并对萃取剂转型条件进行了研究.实验表明:有机相组成为30% HBL101+70%磺化煤油(体积分数)作为萃取剂,料液酸度为113.2 g·L-1 H2 SO4,其最佳萃取条件为萃取温度25℃,萃取时间20 min,相比O/A=1:4.经过五级逆流萃取,锗萃取率达到98.57%.负载有机相用150 g·L-1 NaOH溶液可选择性反萃锗得到高纯度锗酸钠溶液,其最佳反萃条件为反萃温度25℃,反萃时间25 min,相比O/A=4:1.经过五级逆流反萃,反萃率可达到98.1%.反萃锗后负载有机相再用200 g·L-1硫酸溶液反萃共萃的铜并转型,控制反萃温度25℃,反萃时间20 min,O/A=2:1.经过五级逆流反萃,铜反萃率可达到99.5%并完成转型,萃取剂返回使用.  相似文献   

6.
由N235与路易斯碱三辛基氧膦(TOPO)组成协同萃取体系,对碱性氰化浸金贵液中金(Ⅰ)协同萃取和反萃进行了研究.研究了有机相中N235含量、水相平衡pH、相比等因素对金(Ⅰ)萃取率的影响,考察了反萃液中氢氧化钠液浓度对负载金有机相的反萃效果.结果表明,采用有机相为10% 10%协萃剂TOPO 80%煤油的协萃体系,对pH=9~10和初始金(Ⅰ)质量浓度ρo=10.87 mg/L碱性氰化浸金贵液进行萃取时,经一级萃取后,萃取率可高达98%左右;同时,采用0.05~0.1 mol/L的氢氧化钠溶液可对负载有机相进行反萃,反萃率达到91%以上.  相似文献   

7.
烟道灰浸出液和模拟液萃取锗工艺研究   总被引:1,自引:0,他引:1  
研究了烷基膦酸萃以剂P507和喹啉类萃取剂N601协萃浸出液和模拟液中的锗离子,研究了基协萃动力学特性,并对萃合物的谱图进行分析,对其结构进行了推测。  相似文献   

8.
由N235与路易斯碱三辛基氧膦(TOPO)组成协同萃取体系,对碱性氰化浸金贵液中金(I)协同萃取和反萃进行了研究.研究了有机相中N235含量、水相平衡pH、相比等因素对金(I)萃取率的影响,考察了反萃液中氢氧化钠液浓度对负载金有机相的反萃效果.结果表明,采用有机相为10%+10%协萃剂TOPO+80%煤油的协萃体系,对pH=9~10和初始金(I)质量浓度ρO=10.87 mg/L碱性氰化浸金贵液进行萃取时,经一级萃取后,萃取率可高达98%左右;同时,采用0.05~0.1 mol/L的氢氧化钠溶液可对负载有机相进行反萃,反萃率达到91%以上.  相似文献   

9.
废FCC催化剂(废石油催化炼化催化剂)中含有2%以上的富La或富Ce稀土,用盐酸浸取后可得到含有稀土元素和非稀土杂质的氯化稀土溶液。研究用P507(2-乙基己基膦酸单-2-乙基己基酯,HEH/EHP)从盐酸介质中萃取稀土的工艺方法,考察萃取分离稀土的主要影响因素。试验结果表明:可以从P507-煤油-盐酸体系中有效地萃取出稀土元素,较好地实现稀土元素和非稀土杂质的分离,其较优工艺条件为:萃取剂浓度(P507体积分数)为60%,浸取液pH为2.5,萃取相比为2:1,萃取平衡时间为30 min;负载有机相直接用盐酸进行反萃得到氯化稀土溶液,反萃盐酸浓度为2.0 mol/L,反萃平衡时间为60 min。该方法工艺简单,解决了废FCC催化剂的处理问题,减少对环境的污染,同时也回收稀土金属。  相似文献   

10.
有机溶剂萃取分离L-苯丙氨酸   总被引:1,自引:0,他引:1  
以磷酸二(2-乙基己基)脂(D2EHPA)为萃取剂,环己烷为稀释剂萃取L-苯丙氨酸(L-Phe),研究了L-Phe浓度、D2EHPA浓度、温度对萃取分配系数D的影响,以及负载L-Phe有机相的反萃取特性.结果表明:萃取分配系数D随温度的升高而降低。而L-Phe浓度对分配系数的影响还与水相初始pH值有关;萃合物是以一个L-Phe分子和二个D2EHPA分子结合而成.在利用酸溶液对负载L-Phe有机相的反萃取过程中。反萃取的效果符合HCl〉HNO3≥H2SO4〉CH3COOH。且随HCl浓度和温度的升高而升高.  相似文献   

11.
研究了用二-(2-乙基己基)膦酸(P204)-熔融石蜡在60 ℃对金属铜的固液萃取行为,探讨了酸度、萃取剂浓度、Cu2+浓度、稀释剂用量及搅拌时间等因素对金属铜萃取率的影响.用斜率法确定了萃取机理,测定并计算出了表观萃取平衡常数Kex和相关热力学参数.  相似文献   

12.
选用三辛胺(TOA)萃取L-苯丙氨酸转化液中的丙酮酸,研究了萃取时间、稀释剂、萃取剂浓度、水相pH值对平衡常数的影响以及反萃条件.结果表明萃取15min即可达平衡,pH值低对萃取有利,极性稀释剂有利于萃取,TOA浓度以0.4~0.6mol/L为好,2mol/L的NaOH可有效反萃丙酮酸.  相似文献   

13.
研究了二—(2—乙基己基)磷酸(HDEHP)与三正辛基氧化膦(TOPO)从硫酸盐介质中对钴(Ⅱ)的协同萃取.测得协萃络合物的组成为CoA_2·3HA·TOPO,协萃平衡常数 K_3=10~(0.55).协萃机理可视为CoA_2·3HA与TOPO的加合,对熵效应的测定结果支持这一观点。  相似文献   

14.
以水厂污泥为原料,二-(2-乙基己基)磷酸为萃取剂,煤油为稀释剂,研究了浆液萃取铝回收技术。结果表明:含固率为5%的浆液直接采用P204-煤油萃取,在pH=5.0、cP204=0.5 mol/L、相比(VO∶VA)为1∶1的条件下,铝萃取率可达96.9%以上,萃取剂回收率达到98%以上。以5 mol/L硫酸作为反萃剂,相比5∶1的条件下经3级反萃,可回收97.6%的铝,且反萃液符合液态商品硫酸铝的质量标准,可作为混凝剂利用。  相似文献   

15.
以电镍含钴渣为原料,通过酸溶浸出,氧化还原除铜、铁矾除铁及氟化盐除碱土金属工序得到含高镍低钴混合料液;研究了采用2-乙基己基膦酸2-乙基己基酯萃取剂对钴、镍的萃取性能和分离系数的影响;探讨了钴、镍萃合物的电子光谱,并对所得到的固体萃合物的热性质进行测定,说明在不同萃取温度条件下,利用钴、镍萃合物的不同构型,在工艺上能有效地提高钴、镍的分离效率;对负载钴、镍有机相采用洗涤、反萃工艺,可使萃取余液中的钴、镍比达300以上.  相似文献   

16.
硫脲对金、银、铜的反萃取能力和体系的酸度有关。利用此特点,通过调节体系酸度并采用分段反萃取可达到金与银、铜的基本分离。反萃取过程的适宜工艺条件为:温度60℃;反应时间大于5min;流比1/3;硫脲浓度1.2mol/L;酸度0.5mol/L HCl(反萃液Ⅰ)和1.5mol/L HCl和(反萃液Ⅱ)。负载有机相经两段共五级逆流反萃取后,金、银、铜的反萃率均达99.8%以上。将反萃体系在高流比混合澄清器中进行小规模生产性试验,结果与模拟平衡值相近,级效率达95%。用电沉积法将硫脲液中金和银、铜按不同的槽电压进行分离,所得硫脲贫液经调整后可返回反萃体系,反萃能力不受影响。  相似文献   

17.
非皂化P204-H3cit-NdCl3体系萃取分离稀土的方法有效地解决了传统萃取分离体系下,稀土工业生产存在皂化废水中氨氮含量高污染水资源等问题,但该体系反萃取的酸度过高而限制了该方法的进一步应用.通过单级和错流反萃取研究了反萃液酸度、反萃温度、反萃时间和反萃级数对反萃取率的影响,并以此为基础,进一步研究了0.6 mol/L低酸度六级逆流反萃取.实验结果表明:与单级及错流反萃取相比,六级逆流反萃率可达到100%,酸利用率为50%左右,明显减少了酸耗,而且反萃余液酸度为0.3 mol/L左右,达到了现有稀土萃取分离的工业要求.该研究为非皂化P204-H3cit-NdCl3体系萃取稀土元素的应用提...  相似文献   

18.
发现了P538与P204的混合溶剂对文题有很强的协同效应。研究了该体系的萃取行为和性质,考察了混合溶剂的配比、磷酸浓度、两相接触时间、温度等因素对萃取行为的影响,从而确定了分离的最佳工艺条件:温度298K;平衡时间420s;溶剂配比为等摩尔的P538与P204及含40(v)%煤油;相比为1/2,2级逆流萃取;反萃取为:反萃余相浓度(?)=4.4kg/m~3,相比为1,温度298K,盐酸浓度为6kmol/m~3,理论级数为3级。初步研究了该协萃体系的萃取机理,萃合比为2。  相似文献   

19.
研究了氢氧化三烷基甲基铵(转型后的N_(263))-煤油体系从碱性氰化液中萃取金的机理。考察了水相酸度、温度、添加剂高碳醇含量、共存金属银、铜和萃取剂N_(263),浓度对金萃取行为的影响。结果表明:体系的酸度和温度对萃取反应的平衡影响甚徽,高碳醇与N_(203)的摩尔比为0.1~0.3时,对金的萃取较为有利,金的萃取率随着溶液中银、铜含量的提高而下降。采用摩尔比法、连续变化法和平衡移动法综合确定了萃合物的主要形式为Au(CN)_2R_3CH_3N,同时还有部分N_(263)聚合物的萃合物存在。金萃取的表观平衡常数6.3x10~3,萃合物的稳定常数4.8x10~5,离解常数0.08。  相似文献   

20.
本文研究了2-乙基己基膦酸单(2-乙基己基)酯HEH(EH)P从盐酸体系中萃取铟的性能,HEH(EH)P对铟的萃取能力随着酸度增大而减小,但反萃较D_2EHPA容易。斜率法证明萃取平衡反应为:用饱和法制得萃合物组成为InA_3。萃合物Hn(HA_2)_3与InA_3之间差别是由于有机相负载量增大引起的,In(HA_2)_3中的氢离子逐渐被金属离子所交换,最后形成饱和的萃合物InA_3。红外光谱和核磁共振研究表明:HEH(EH)P萃取铟的机理是阳离子交换反应,并与P=O键的配位作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号