首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
采用正交试验法优化载转化生长因子β1(transforming growth factor-β1,TGF-β1)缓释明胶微球多孔钛植入体制备工艺,探讨多孔钛植入体孔隙内微球涂层的载药、释药特性.采用粉末注射成形(Metal Injection Molding, MIM)技术制备多孔钛植入体,选用明胶为TGF-β1缓释载体材料,乳化冷凝聚合交联法制备明胶微球,检测微球粒径与形貌以及载TGF-β1微球的包封率、载药率,采用渗涂法制备多孔钛表层孔隙内载TGF-β1明胶微球涂层,释放试验检测涂层的释药特性.实验结果表明,MIM技术制备的多孔钛植入体的孔隙度为(62.02±1.82)%,孔径为50~300 μm,抗压缩强度为(63.23±12.81) MPa,弹性模量为(0.95±0.61) GPa.明胶微球粒径随明胶浓度的减小、搅拌速度和交联时间的增加而减小,交联剂用量对微球粒径影响无显著性差异.制备的TGF-β1明胶微球为球形,平均粒径为(21.42±3.67) μm,载药量为(0.91±0.02) μg/g,包封率为(91.41±1.82)%.TGF-β1微球涂层体外14 d,时的TGF-β1释放率为(94.2±3.4)%;粒径为(21.42±3.67) μm的明胶微球的最佳工艺参数如下:明胶浓度为10%,搅拌速度为800 r/min,交联剂用量为0.1 mL,交联时间为2 h.多孔钛植入经5%(质量分数)明胶溶液预处理后用20 g/L微球渗涂可在表层孔隙内形成均匀微球涂层,且不阻塞表层孔隙,微球涂层TGF-β1释放时间为14 d.  相似文献   

2.
用改良的乳化冷凝法制备了大粒径明胶微球,微球平均直径约250μm.用三种不同的方法对制备的明胶微球进行后处理,得到表面形貌不同的明胶微球.用形貌各异的明胶微球作为微裁体培养成纤维细胞,结果表明细胞粘附率不同.成纤维细胞在明胶微栽体上生长情况良好,有明显的增殖现象.其中,经冷冻干燥处理得到的明胶微球具有孔道结构,适合成纤维细胞的黏附和生长,作为细胞微裁体使用效果良好.  相似文献   

3.
目的制备EDC交联的明胶微球作为支架材料,并对其生物相容性进行评价,为构建工程化的脂肪组织奠定基础.方法制备明胶微球,并利用5 mmol EDC对其进行交联,获得75~150μm粒径大小的微球;扫描电镜观察,检测微球的细胞相容性和组织相容性.结果经EDC交联的明胶微球均呈圆球体,大小比较均匀,粒径75~150μm,细胞毒性等级为0~Ⅰ级;将微球植入SD大鼠皮下,植入部位未见明显红肿,伤口无红肿、渗液等炎性反应,组织学观察植入明胶微球局部无明显炎症细胞浸润,静态培养时脂肪组织来源干细胞(ADSCs)在微球上生长状态良好.结论 EDC交联的明胶微球是一种具有较好的细胞亲和性、生物相容性和生物可降解性的天然高分子支架材料,以脂肪组织来源干细胞为种子细胞,可以为临床使用提供一种工程化脂肪组织填充物.  相似文献   

4.
摘要:目的 采用乳化-交联的方法制备盐酸罗哌卡因明胶微球并探讨其药效学特性。方法 采用乳化-交联法制备盐酸罗哌卡因明胶微球,高倍显微镜观察微球粒径大小及形态,紫外分光光度法检测微球中盐酸罗哌卡因的含量,外科植入手术法给药将其植入大鼠坐骨神经,观测其镇痛持续时间及其对运动的影响。结果 盐酸罗哌卡因和明胶制成的盐酸罗哌卡因明胶微球为深黄色粉末,光镜下呈散在圆形,平均粒径约28.9士9.8um,计算出盐酸罗哌卡因微球的载药量为21.4%,药物包封产率为74.8%,制备工艺优选中盐酸罗哌卡因与明胶最佳投料比1:2.5。体内药效学显示微球可较明显地延长盐酸罗哌卡因镇痛持续时间至4小时以上。结论: 盐酸罗哌卡因明胶微球是一种较新剂型,原材料易得,制备工艺简便,自制的微球具有一定的缓释性,能适当延长罗哌卡因作用时间。  相似文献   

5.
鼻粘膜给药用明胶微球的制备   总被引:2,自引:0,他引:2  
以明胶为原料,葡聚糖为交联剂,采用乳化化学交联固化法制备鼻粘膜给药用明胶微球。结果表明:在明胶质量浓度为0.15 g/mL,乳化剂Span 80质量浓度为0.02 g/mL,搅拌速度=800 r/min,V(液体石蜡)∶V(水)=15∶1的最优反应条件下,制备的未交联明胶微球平均粒径=47±7.6μm,葡聚糖交联明胶微球的平均粒径=38±4.2μm。  相似文献   

6.
采用正交试验设计对纳米SiO_2微球各组分因素的不同水平进行优化组合,将各水平组合制备成相应的微球,以微球SiO_2含量为评价指标筛选出最佳组分因素的水平组合.通过考察、表征和比较这些微球的粒径、载药量和包封率等指标,同时结合载药微球-利福平纳米二氧化硅微球的释放试验,分别进行纳米SiO_2微球组分对微球制备、微球表征和药物释放影响的评价.获取的最佳水平组合为A1B3C3D3,即纳米SiO_2粒径10 nm、PLA 80 mg/mL、明胶40 mg/mL和二氯甲烷:丙酮=2∶2.该水平组合制备的利福平纳米SiO_2微球外观圆整,大小均匀,粒径可控,其载药量、包封率均在60%以上,且体外释放稳定,符合药物缓释的要求.实验结果也显示,聚乳酸含量为载药量的最主要影响因素,其次为两种溶剂(疏水与亲水)的比例,以及孔径和稳定剂的含量.  相似文献   

7.
模板法制备明胶多孔微球   总被引:2,自引:0,他引:2  
以单分散聚苯乙烯(PS)微粒为致孔剂,采用模板法制备了一种新型的明胶多孔微球,并用扫描电子显微镜(SEM)对其进行了表征.结果表明,通过调节PS微粒的用量和粒径大小可以控制微球和孔径的大小,且微球表面有均匀的孔结构.  相似文献   

8.
苦杏仁苷明胶微球的制备及其工艺优化   总被引:1,自引:0,他引:1  
对苦杏仁苷明胶微球的制备工艺及特性进行初步研究.以生物降解材料明胶为载体,采用乳化化学交联法制备含苦杏仁苷的明胶微球,并进行验证试验和微球的体外溶出试验以及微球稳定性和胃黏膜刺激性实验.优化最佳处方为明胶质量分数15%,苦杏仁苷与明胶质量比1∶10,液体石蜡与明胶溶液体积比4∶1;制备的苦杏仁苷明胶微球外形圆整, 稳定且刺激性小,平均载药量为7.5%,包封率为25.12%.  相似文献   

9.
生物降解多肽和蛋白质药物的控制释放研究   总被引:6,自引:0,他引:6  
用具有生物降解性和血液相容性的聚乳酸(PLA)为载体材料,以牛血清白蛋白(BSA)为多肽-蛋白质药物的模型化合物,分别用相分离法(PSM)和溶剂萃取法(SEM)制备出了平均粒径为50-90μm的PLA/BSA微球。研究了不同制备方法,BSA用量,载体中明胶的加入及载体材料的构型对BSA释放速度的影响。结果表明,用PSM和SEM制备的PLA/BSA微球的包埋效率分别为94.1%和35.2%,含明胶和不含明胶的PLA/BSA微球在12d内BSA的累积释放量分别为47.0%和84.9%,用上述峡谷种方法制备的PLA/BSA微球均具有可控释放BSA的功能,含明胶的PLA/BSA微球具有更长的BSA释放周期。  相似文献   

10.
以虾壳为原料制备壳聚糖.通过反相悬浮交联法制备壳聚糖微球和头孢替唑钠载药微球.研究了醋酸浓度、壳聚糖浓度、乳化剂用量、油水比、交联密度、反应时间和搅拌速度等因素对微球平均粒径和粒径分散度的影响.  相似文献   

11.
聚乳酸微球的制备   总被引:8,自引:3,他引:5  
利用聚乙烯醇和阿拉伯胶作为修饰剂, 采用溶剂挥发法制备聚乳酸微球, 通过正交实验设计研究了不同的修饰剂、 有机溶剂、 聚乳酸浓度、 表面活性剂、 搅拌速度等因素对微球粒径的影响, 并对制备的微球粉体学性质进行了初步研究. 结果表明, 在本文的工艺流程下制备的微球具有较均一的粒径, 平均粒径为2.0~3.0 μm, 微球表面平滑, 呈球形.  相似文献   

12.
以聚乙烯醇、明胶和环硫氯丙烷为原料制备的一种巯基功能化聚乙烯醇-明胶复合微球吸附剂,具有组成可控、尺寸均匀和微观结构多孔性等特点,在高浓度汞离子环境下对汞离子的吸附率可达93.0%,在微量汞离子环境下对汞离子的吸收率为99.2%,并且多次使用后其损失率低于1.0%,是新一代高性能汞吸附用高分子材料.  相似文献   

13.
报道了一种液相芯片的微球敏感元件载体的制备方法.利用分散聚合法,以苯乙烯(St)为聚合单体,偶氮二异丁腈(AIBN)为引发剂,聚乙烯吡咯烷酮(PVP)为稳定剂,乙醇和水作为分散介质,合成了微米级单分散性聚苯乙烯微球,详细探讨了单体浓度、引发剂、稳定剂的用量对微球的粒径及单分散性的影响,并对微球的表面形貌进行了表征.结果表明,制备的聚苯乙烯微球作为液相芯片的敏感元件载体,具有良好的单分散性,粒径约2.2 μm,并且表面光滑致密,适合下一步在其表面引入羧基、氨基等功能基团以进行表面化学与生物活化,从而制成液相芯片的敏感元件.  相似文献   

14.
目的,研究纳米SiO2微球组分及制备影响因素、微球表征以及利福平纳米微球的释放效果。方法:1)正交试验选出制备纳米SiO2微球各因素的最佳水平组合;2)乳化剂挥发法制备利福平纳米SiO2微球,并考察和表征其粒径大小、载药量和包封率等指标。3)利福平纳米二氧化硅微球释放评价试验。结果显示:最佳水平组合为A1B3C3D3,即纳米Si02粒径10nm、PLA 80mg/ml、明胶40mg/ml和二氯甲烷:丙酮=2:2。制备的利福平纳米SiO2微球外观圆整,大小均匀,粒径可控。影响载药量因素最主要为聚乳酸含量,其次为两种溶剂(疏水与亲水)的比例,然后是孔径和稳定剂的含量。结论:该方法制备的利福平纳米SiO2微球其载药量、包封率均在60%以上,且体外释放稳定,符合药物缓释的要求。  相似文献   

15.
亚微米级单分散聚苯乙烯微球的制备和影响因素研究   总被引:1,自引:0,他引:1  
目的:考察合成条件对快速法合成的聚苯乙烯(PS)微球粒径和分散系数的影响。方法:在保持其它影响因素不变的前提下,分别改变温度、引发剂浓度、离子强度,采用无皂乳液聚合法制备PS微球。结果:通过扫描电镜(SEM)观测合成的PS微球的形貌,并据此测算微球粒径和分散系数。结论:温度是影响微球粒径的重要因素,在反应温度为55~80℃之间,以水为分散介质的无皂乳液聚合法可制备出单分散性很好的亚微米PS球;引发剂浓度增加,微球粒径先减小,后增大,当引发剂浓度过大时(≥9.93×10^-3mol·L^-1),分散系数变大,微球粒径不均匀;微球粒径随离子强度的增加呈增大趋势,但离子强度的增大容易导致微球粒径分布变宽。  相似文献   

16.
以甲基丙烯酸缩水甘油酯(GMA)为单体,用分散聚合法,得到一系列1~8μm的粒径可控的单分散微球。系统地研究了溶剂体系、单体用量、引发剂用量、稳定剂用量、反应温度等各种聚合参数,对聚合产物粒度及其分散性的影响。并用该微球通过一步溶胀法制备了多孔微球,对其进行了表面修饰,进而考察了其对牛血清白蛋白的静态吸附性能力。  相似文献   

17.
采用单分散聚合法和种子溶胀法,在乙醇/甲醇体系中以甲基丙烯酸甲酯(MMA)为单体、偶氮二异丁腈(AIBN)为引发剂、聚乙烯吡咯烷酮(PVP)为分散剂制备聚甲基丙烯酸甲酯(PMMA)高分子微球,并以此作为后继制备三维(3D)多孔结构锂电池材料的合成模板剂.讨论两种合成方法获得微球的粒径均匀性和粒径分布,认为单分散聚合法能获得较为理想的模板剂,研究此方法中单体介质比和引发剂浓度对微球粒径和分散性的影响,得出最佳合成条件为:MMA/medium=13.8%(质量分数,全文同),AIBN=6g时,合成微球的粒径最均匀,平均为3.8μm,粒径分布为0.103 2.  相似文献   

18.
利用无乳化剂乳液聚合法合成了粒度均匀 ,具有活性醛基的聚丙烯醛微球 ,并对影响其粒径、成球性、色泽及分散性等性质的 p H值、丙烯醛浓度、反应温度、催化剂浓度和搅拌方式等工艺条件做了优化选择 ;产物微球纯度高 ,表面活性大 ,粒径均一可调。利用 TEM和 IR技术对产物进行了初步表征 ,并对聚丙烯醛微球的聚合生成机制进行了初步探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号