首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
为解决在复杂交通环境中自适应巡航系统存在旁车切入本车前方工况时,目标期望距离计算模型得到的期望相对距离与实际相对距离发生阶跃以及堵车蠕行工况,车辆与前车距离较近,拥堵路况不断启停的目标车辆的速度、加速度和相对距离持续抖动,导致的纵向加速度幅值过大带来的驾驶平顺性、舒适性和安全性问题,提出可变目标距离的自适应巡航控制算法,基于模型预测控制理论,建立离散纵向运动学预测模型,综合考虑底盘加速度响应、极限安全纵向跟车距离、车辆自身物理限制、驾驶人乘坐舒适性等优化控制目标,引入松弛因子进行在线求得可行解.在旁车不同切入工况、综合工况行驶以及堵车蠕行工况对本算法进行仿真和实车测试并利用数据对IDM算法开环实验,研究成果对比表明,考虑旁车切入的可变目标距离的自适应巡航控制算法在旁车加速切入工况中,纵向控制产生的最大冲击度为-0.25 m/s3,相比于IDM模型降低50%,堵车蠕行工况中纵向控制产生最大减速度为-0.3 m/s2,相比于IDM模型降低30%,综合工况和定速巡航工况中,算法在保持安全距离情况下可以对车辆实现稳定纵向控制,加速度幅值不超过-0.3...  相似文献   

2.
汽车自适应巡航系统通过分层控制即上层控制器向下层控制器(节气门或制动执行器)发出指令,实现汽车自动加速、减速或保持车速不变,以保持后车与前车间的期望距离。文章将自适应巡航汽车的控制模式划分为速度控制模式和车距控制模式,考虑到2种模式之间的博弈,根据车距与相对速度之间的关系建立2种模式之间的切换策略,以实现速度控制模式和车距控制模式间的平稳切换;再利用PI(proportional integral)控制和模糊控制对期望加速度进行控制,完成上层控制器的建立;根据刹车油门切换逻辑区分期望加速度和期望减速度,建立下层控制;最后利用CarSim和Matlab/Simulink软件对自适应巡航汽车的行驶工况进行联合仿真,仿真结果表明该控制策略能使后车较为稳定地跟踪前车。  相似文献   

3.
在定速巡航的基础上,结合跟车巡航功能,设计了一种自适应巡航分层控制系统,可根据行驶工况自动切换其工作模式,实现巡航系统的智能化。该系统综合考虑了跟车系统中前车车速、加速度、车距等各种因素,利用模糊控制技术的优点,提高控制系统的性能。利用Matlab仿真及硬件在环技术进行实验研究,结果表明该控制系统能够实现巡航模式的自适应切换,并且具有较高的控制精度和理想的巡航性能。  相似文献   

4.
为实现多目标协调式自适应巡航控制(ACC)系统的实车应用,分析并解决了模型预测控制(MPC)理论实用化过程的弱鲁棒性、非可行解和高计算复杂度问题。采用反馈校正法补偿跟车模型的预测误差,改善模型对跟车系统状态的预测精度;再利用约束管理法,修正MPC代价函数,松弛其输入输出(I/O)硬约束;基于变量集结法,降低待优化变量的维数,缩减MPC优化问题的规模。以某重型卡车为对象的ACC仿真表明:该方法可有效提高ACC对模型失配的鲁棒性,避免因过大跟踪误差造成的控制律非可行解,提高MPC计算效率的同时不影响其控制最优性。  相似文献   

5.
为提升自动驾驶汽车在自适应巡航跟车和车道切换联合工况下的纵向跟驰、横向稳定性能,针对加速跟随前车且同时换道这一特殊工况下的车辆行驶稳定性控制需求,提出了一种具有两层结构的协同控制策略.在分析跟车和换道联合工况控制需求基础上,建立了基于五次多项式的换道轨迹模型和固定车头时距跟车模型,设计了上层线性时变模型预测控制器,输出...  相似文献   

6.
为进一步提升多目标自适应巡航系统预测控制精度,提出一种基于粒子群寻优的汽车自适应巡航预测控制算法.首先建立一种包含前车加速度扰动的自适应巡航系统车间纵向运动学模型,并对其线性离散化;其次综合车距误差、相对车速、自车加速度和冲击度,设计二次型多目标优化性能指标函数和多参数约束条件,构建自适应巡航预测控制优化命题;最后为便于问题求解,将目标函数和约束条件推导转化为以预测控制增量为优化变量的规范形式,并基于粒子群优化算法求解自适应巡航预测控制的最优控制律.通过Matlab/Simulink多工况仿真结果表明,粒子群算法求解的最优控制律能够控制自车保持更好的跟踪性和自适应性.   相似文献   

7.
一种汽车巡航控制的分层控制算法   总被引:2,自引:0,他引:2  
为减轻驾驶员操作负荷,提高车辆行驶的安全性和舒适性,提出了一种自适应巡航分层控制算法,并通过调节电子节气门实现了在实车上的应用.在上层控制中,设计了一种基于驾驶员稳态跟车特性的线性跟车算法和可供选择的安全车距模型;在下层控制中研究了基于逆查询表的速度闭环控制策略.通过道路实验知识构建了节气门开度查询表,并结合增量式PID控制的精细调节,实现了良好的车速跟随效果.在此基础上,通过定速巡航实验和稳态跟车实验对所设计的控制算法进行了实车验证.实验结果表明,在正常行驶工况下,自适应巡航控制器能有效降低驾驶强度,对驾驶员具有良好的适应性和舒适性.  相似文献   

8.
论文以四轮轮毂电机电动车为对象,研究了综合考虑理论安全距离与实际距离之差、两车相对速度的模式切换控制和再生制动的自适应巡航控制(ACC)策略。该控制策略将ACC分为跟随前车模式、定速巡航模式和匀速行驶模式,设计了包括理论安全距离算法、驱动力矩控制算法、制动力矩控制算法的自适应巡航控制器,通过再生制动对制动能量进行回收,并基于驾驶模拟器实验台设计典型工况对控制策略进行实验验证。结果表明:设计的自适应巡航控制策略能够使本车安全跟随前车,提高驾驶舒适性,实现再生制动控制。  相似文献   

9.
以四轮轮毂电机电动车为对象,研究了综合考虑理论安全距离与实际距离之差、两车相对速度的模式切换控制和再生制动的自适应巡航控制(ACC)策略。该控制策略将ACC分为跟随前车模式、定速巡航模式和匀速行驶模式,设计了包括理论安全距离算法、驱动力矩控制算法、制动力矩控制算法的自适应巡航控制器,通过再生制动对制动能量进行回收;并基于驾驶模拟器实验台设计典型工况,对控制策略进行实验验证。结果表明:设计的自适应巡航控制策略能够使本车安全跟随前车,提高驾驶舒适性,实现再生制动控制。  相似文献   

10.
针对智能电动汽车(intelligent electric vehicles,IEV)的纵向控制在不确定性干扰下存在非线性、强时变特征,提出一种分层控制架构下的智能电动汽车纵向跟车运动自适应模糊滑模控制方法.根据经典理论力学建立表征智能电动汽车纵向行为机理的动力学系统模型,并进一步构建智能电动汽车纵向跟车运动分层控制构架.上层控制根据本车与前车的行驶状态信息得出期望加速度滑模控制律,进而利用自适应模糊系统替代滑模切换项以改善控制性能;下层控制通过设计驱动/制动切换策略以提高行驶舒适性,然后基于逆动力学模型实时求解期望控制力矩以跟踪期望加速度.为验证所提方法的有效性,在不同行驶工况下进行的仿真试验结果表明,该方法能实现本车平稳准确地跟随前车行驶,且对前车加速度的干扰具有鲁棒性.  相似文献   

11.
提出一种具有自适应补偿能力的反馈校正模型预测控制器设计方法,该控制器由卡尔曼滤波器和模型预测控制器构成.建立ACC控制系统车间纵向跟车动力学模型,采用卡尔曼滤波器进行状态变量的估计,消除测量噪声的干扰;利用反馈校正机制改进跟车预测模型,以处理参数不完全确定和外部干扰对模型精度带来的影响,并采用向量松弛因子对硬约束进行软化处理,避免优化求解过程中出现无可行解的情况.将本文所设计的控制器转化为带约束的二次规划问题,利用MPC控制器滚动优化的特点,将控制量作用于被控对象,实现自适应巡航控制.实验结果表明:在存在测量噪声的情况下,本文提出的方法有效地提高了ACC系统的跟车安全性和乘坐舒适性,并且系统具备良好的抗干扰能力.   相似文献   

12.
汽车自适应巡航控制主动制动实现方法   总被引:1,自引:1,他引:0  
探讨主动制动控制系统在汽车自适应巡航控制中的作用.对主动制动采用基于加速度的控制方案,给出了主动制动系统的硬件组成.为了实现期望加速度跟随控制,在理论和试验的基础上建立了用于求解期望制动压力的车辆制动逆动力学模型.利用改进的PID算法开发了制动压力控制器.实车试验证明,制动压力和加速度控制效果都达到了自适应巡航系统对主动制动控制的要求.  相似文献   

13.
针对自动巡航系统中前车加速度预测问题,以及为满足人们对车辆安全性、舒适性和经济性要求,提出一种基于高斯过程回归的车辆自动巡航系统学习预测控制策略.先用高斯过程回归法对前车加速度做学习建模,再结合车间运动学模型定义车辆自动巡航系统预测模型.进而,通过在线滚动优化车辆自动巡航系统安全性、舒适性和经济性综合指标,建立车辆自动巡航系统学习预测控制器.最后,通过CarSim/Simulink联合仿真平台,将本方法的加减速典型驾驶工况与传统预测巡航控制策略下的驾驶工况对比验证.结果表明:与传统控制策略相比,本文方法更具有效性和优越性.  相似文献   

14.
建立车辆侧向动力学模块、车辆传感模块、道路曲率预瞄模块.在传统模型预测控制(MPC)算法的基础上,利用辛普森法则,结合车道保持优化性能指标和系统约束,设计基于自适应模型预测控制的车道保持控制策略.在Simulink环境下,将其与基于传统模型预测控制器进行比较分析.仿真结果表明:相较于模型预测控制,自适应MPC能够在各控制周期实现车辆模型更新,在强非线性工况下具备较好的鲁棒性,进而能够保证行车安全的前提下,获取较好的乘坐舒适性.  相似文献   

15.
为了综合协调车辆跟车时的追踪性能、燃油经济性能、驾乘人员舒适性能和跟车安全性能,研究了多目标自适应巡航控制(ACC)算法,建立了包含车辆模型和车间关系的ACC系统集成式纵向运动学模型,设计了描述追踪误差、燃油消耗量和驾驶员跟车行为误差的目标函数,以及保证动态跟车、期望驾乘感受和跟车安全的约束条件,基于模型预测控制理论将多目标ACC系统控制算法转化为带有多个约束的在线二次规划问题。采用反馈校正机制改善了算法设计时存在的建模失配和外部干扰等低鲁棒性问题,引入向量松弛因子解决了优化求解过程中硬约束导致的控制算法非可行解问题。仿真结果表明,相比线性二次型调节器的ACC算法,所提控制算法在前车循环工况中100km油耗降低9.3%,追踪误差指标降低21.7%,从而实现了良好的车辆追踪,同时满足驾驶员期望的跟车特性要求。  相似文献   

16.
为进一步提升车辆跟随控制对复杂工况的适应能力,本文发展了一种多目标自适应巡航控制算法.车辆弯道跟随过程中,充分考虑了车辆动力学的纵横向耦合特性,建立了4-DOF整车动力学模型,基于干扰解耦设计将整车动力学模型解耦成采用一阶惯性环节近似的线性纵向跟随模型以及采用一阶非定常微分方程描述的横向动力学模型,再通过线性变参数方法对连续横向动力学系统方程进行一次性离散化计算,以避免在每个控制周期均需对其进行p次(p为预测时域长度)离散化处理的高计算复杂度问题.进一步,基于MPC框架设计了实时多目标权重控制策略以及考虑跟随工况的多场景融合策略,以实现纵横向性能动态协调的集成式预测控制.仿真结果表明,相对传统的参数离线标定的控制策略(MPC-CW),考虑多场景融合设计的实时多目标权重控制策略(MPC-RW*)能够较好地实现期望跟车目的.  相似文献   

17.
针对自适应巡航系统控制鲁棒性及存在路面扰动、实时扰动等不确定性的问题,提出一种考虑安全车距的车辆自适应滑模控制方法.首先通过建立车辆纵向动力学模型,并将道路坡度作为系统扰动;基于安全车距设计自适应巡航滑模控制器,通过稳定性分析证明该控制器的稳定性;最后,通过与PID控制算法进行对比研究.结果表明:采用滑模控制器的自适应巡航控制系统具有更好的跟踪性能和抗干扰能力.  相似文献   

18.
针对目前使用较为广泛的基于模型预测控制的自适应巡航系统,该文提出一种分层控制结构,设计一种变权重的模型预测控制器作为上位控制器。为了获得最佳加速度,综合考虑驾驶员期望车距,车辆自身物理限制,前车加速度影响等因素。使用高斯朴素贝叶斯算法预测前方车辆未来行为,从而采取不同的权重参数策略。通过Matlab/Simulink与Carsim对固定权重参数和可变权重参数分别进行联合仿真,结果表明,随着道路条件的变化,可变权重参数可以提高车辆自适应巡航系统的表现效果,显著降低固定权重策略的系统速度和距离偏差量,有效提高了系统的控制精度与适应性。  相似文献   

19.
提出了一种用于自适应巡航控制(ACC)系统的控制模式切换策略。现有ACC控制模式的划分及其切换策略有可能使车辆加速度变化过于剧烈,且未考虑驾驶员超车等需求,不利于驾驶舒适性。该文在现有ACC控制模式的基础上增设接近前车和超车2种控制模式,提出基于零期望加速度曲线的切换策略,并利用加权平均算法对控制量进行连续性处理。实车试验表明:所设计的ACC控制模式切换策略与实际驾驶工况相符,能够实现切换过程中加速度的连续平稳变化,并满足驾驶员控制优先权的要求。  相似文献   

20.
为解决自适应巡航控制快速原型开发并提高仿真系统精度,建立了包含电子节气门与主动制动等硬件在内的执行机构在环仿真系统. 利用模糊前馈与PI反馈设计了以距离偏差和速度偏差为输入,基于加速度控制的前车跟随控制器,使主车保持安全车距跟随前车车速行驶,利用执行机构在环仿真系统对开发的前车跟随控制器进行了验证. 结果表明仿真系统运行正常,前车跟随控制器可完成对主车的控制,并对主车参数的变化及环境扰动具有一定的抗干扰能力.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号