首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
为了准确地描述采用6个轮边电机独立驱动的双减震轮式机器人的响应特性以及轮胎的动载荷,通过构造适合不同等级路面的6×6轮整车13自由度垂向动力学模型进行仿真。该模型包含了双边6个车轮垂向位移,车身质心垂向位移,车身四角垂向位移,车身俯仰运动以及车身侧倾运动,并且将左右轮在行驶过程中的相干性以及行驶过程中左右轮地面信号输入的不同的情况考虑在内;同时利用三角级数法构造并验证了仿真所需的各级路面时域信号,可以模拟在任何等级路面下的运动情况;建立了利用MATLAB/Simulink平台求解该动力学模型以获得响应特性及轮胎动载荷的研究方法。结果表明,在F级路面下的整车13自由度垂向动力学模型的可行性以及准确性。可见,该动力学模型可为以后6×6双减震轮式机器人相关参数(例如悬架优化,有限元分析,轻量化设计)的优化提供参考。  相似文献   

2.
为了研究不同等级道路下车辆动态响应以及轮胎动载荷的变化情况,根据国家路面不平度分级标准,采用滤波白噪声法建立了随机路面时域模型并与标准路面的功率谱密度对比验证模型的准确性。通过四个车轮之间的传递函数建立了四轮随机路面时域激励模型;并以该模型作为不平路面激励,考虑悬架拉伸和压缩状态时的不同阻尼,建立七自由度整车行驶动力学模型。研究了车辆质心垂向加速度、俯仰角、侧倾角以及轮胎动载荷随路面等级的变化情况。结果表明:车辆和轮胎的动态响应随着路面不平度的增加而增加。可见,搭建的整车模型能够很好地反映不同路面下车辆的动态响应,为车路耦合的深入研究奠定基础。  相似文献   

3.
建立了整车8-DOF系统动力学模型,考虑了主动悬架控制,并增设了主动座椅控制,设计了车辆主动悬架系统的LQG控制器。基于Matlab仿真平台建立了整车8-DOF系统动力学仿真模型,对所得最优控制策略下的动态响应进行了仿真验证。仿真结果表明:为了改善人椅系统质心及车身质心的跳振性能需要在一定程度上弱化各轮轮胎动位移性能。从控制效能上来看,该最优控制器能够满足各行驶状态下对悬架性能的要求,改善了车辆的行驶平顺性。  相似文献   

4.
为分析虚拟轨道列车在站间全行驶状态下(牵引、匀速、制动)的动载特性和道路友好性,基于车辆动力学、轮胎动力学、非线性动力学等理论,构建了随机路面激励下的虚拟轨道列车动力学模型,该模型考虑了车辆之间的耦合作用和轮胎-路面的相互作用,并对该动力学模型进行了验证。通过理论分析和数值计算,对虚拟轨道列车在站间全行驶状态下的动载特性和道路友好性进行了探究,同时分析了运行速度、路面等级和加/减速度的影响。结果表明:全行驶状态下的各轮纵向力趋于稳定值,牵引和制动状态下大小相等,方向相反,匀速状态下趋于零。牵引状态下车辆1前轴垂向动载荷均方根值最大,而制动状态下车辆3后轴最大。相较于牵引和制动状态,匀速状态下的道路友好性更优。垂向动载荷均方根值和道路友好性均与运行速度、加/减速度均呈正相关,与路面等级呈负相关。研究内容能够为虚拟轨道列车的运行模式提供建议以提高运行效率,同时,能够为沥青路面的选型提供指导以减缓道路损坏。  相似文献   

5.
考虑汽车主动悬架的控制效果,应用汽车系统动力学理论建立七自由度整车悬架模型;采用电磁阀式减振器技术方案,对主动悬架控制系统进行了总体方案设计;在递归对角神经网络算法的基础上构建了主动悬架控制器,利用遗传算法进行神经网络权值训练。Simulink和d SPACE实时硬件在环联合仿真结果表明:在间歇颠簸路面激励作用下,对车身垂向加速度、轮胎动行程所进行的仿真分析,以及对车辆座椅进行的振动分析,都说明该算法对主动悬架具有较明显的控制效果,较好地提高了行驶平顺性和操纵稳定性。  相似文献   

6.
考虑到路面垂向不平度和由轮胎效应所产生的侧向激励,选取14个自由度传统整车模型为背景,通过对簧载质量空间受力分析,研究整车垂向、侧向、俯仰角、侧倾角和横摆角等5种运动及其与垂向、侧向各4个1/4车辆系统间的动力耦合定量关系,形成由各个相对独立的1/4车辆集合而成的分层并行模型,提出四轮独立减振车辆概念。以上述推导的耦合关系作为上层,各个1/4车辆为底层控制单元,借助Matlab中成熟的鲁棒控制策略进行验证。结果表明:由于实现了4个1/4车辆振动控制量的并行解算,加快了系统响应,改善了车辆乘坐舒适性和行驶平稳性,为四轮独立减振车辆今后应用于汽车领域奠定理论基础。  相似文献   

7.
为探究ISD悬架作为履带机器人悬架方案的应用价值,以某履带机器人方案为例,建立了采用ISD悬架的1/2移动平台8自由度模型,进行力学分析得到了系统运动微分方程,以计算机模拟的路面随机激励时域模型作为输入,利用MATLAB/Simulink建立履带机器人动力学模型,考虑履带承重轮之间地面输入的迟滞性,将路面不平度和履带机器人行驶速度相结合对模型进行仿真。结果表明:采用ISD悬架的履带机器人方案相对于采用传统被动悬架的方案,质心垂向加速度和俯仰角加速度均有明显减小,即行驶平顺性得到了改善,可见ISD悬架的应用可以提高履带机器人的行驶平顺性。  相似文献   

8.
针对液压互联悬架设计参数影响车辆动力学响应的问题,建立整车7自由度机械-液压耦合动力学频域模型,推导了侧倾与俯仰角加速度、垂向加速度与轮胎动载荷的频域响应函数,分析液压互联悬架系统油压、蓄能器体积、前后液压作动器上下腔面积差与面积比等参数对车辆动力学特性的影响.仿真结果表明,油压与蓄能器体积对车辆频域响应的影响呈现相反的相关性,作动器上下腔面积差对频域响应的影响较大,上下腔面积比仅对侧倾角加速度和轮胎动载荷功率谱有明显影响.最后,进行样车性能试验,仿真与试验结果的误差较小,关键参数对车辆频率响应特性的影响趋势具有较好的一致性.  相似文献   

9.
车身疲劳载荷谱的位移反求法   总被引:2,自引:0,他引:2  
提出运用轮心位移反求法求取车身载荷谱的方法.通过布置合适的传感器,采集试车场强化路面的道路载荷谱信号;建立精度满足要求的整车多体动力学模型;基于采集的道路载荷谱和多体模型进行虚拟迭代,并进行车身载荷谱的分解.结果表明,迭代后仿真信号与试验值的一致性好,随后提取的车身载荷谱具有较高的可靠性,可用于车身疲劳寿命预测.  相似文献   

10.
电动车用轮毂电机受路面激励和车重的双重作用,定转子相对偏心进而产生不平衡磁拉力,其垂向分量与车辆悬架系统的垂向振动相耦合,影响电动汽车的平顺性、舒适性等性能。针对这一机电耦合问题,以一台永磁式轮毂电机为研究对象,利用磁场叠加法获得负载气隙磁密分布,引入复数相对磁导和偏心磁导修正系数,建立考虑定子开槽效应的电机偏心磁场和不平衡磁拉力解析模型,并通过有限元仿真和样机试验验证了解析模型的有效性。根据悬架系统的垂向振动与电机偏心不平衡磁拉力的实时耦合关系,利用拉格朗日法求解车辆动力学方程,建立1/4车身垂向耦合振动模型。以轮毂电机定子垂向振动加速度、车身垂向振动加速度、悬架动挠度和轮胎动载荷为主要指标,研究机电耦合效应对车辆垂向动力学特性的影响,揭示不平衡磁拉力输出特性与车辆动力学响应之间的机电耦合机理。研究结果表明,机电耦合效应使电动汽车的平顺性、操稳性和安全性等性能总体下降。  相似文献   

11.
 通过建立2自由度1/4车辆主动悬架模型和电动静液作动器模型,综合机器人柔顺性控制中阻抗控制的优点,分析其在液压式主动悬架的适用性,将位置反馈和力反馈控制应用于液压式主动悬架系统。设计了采用模糊控制的位置反馈控制器和力反馈线性控制器,并以阻抗控制跟踪车轮动载荷得到簧载质量位移修正量。利用Matlab/Simulink搭建B级路面和0.1 m凸起路面激励下的悬架系统模型。仿真结果表明,相对于被动悬架,其车身垂直加速度、悬架动挠度及车轮动载荷的均方根值均有所下降,该控制策略能较好地提高车辆的行驶平顺性和操纵稳定性。  相似文献   

12.
文章从转向对悬架系统影响的角度出发,建立了转向工况下的1/4汽车动力学模型及仿真模型。通过模拟路面输入,在不同车轮转角和车速等行驶工况下进行了大量的仿真计算。仿真结果表明,不同车速和车轮转角所产生的不同侧偏力,对车身垂直加速度、悬架动挠度和轮胎动载荷的变化有较大影响,随着车速提高和车轮转角增大,侧偏力也随之增大,致使其加速度等输出响应变化更为显著。  相似文献   

13.
以修正的Burgers模型作为沥青混合料本构模型,通过有限元软件分析了荷载大小、加载方式以及面层材料对路表竖向位移、底基层底面水平应力、面层内剪应力以及路表轮迹处竖向应力的影响.结果表明:荷载大小为影响沥青路面应力场和变形场的最主要因素,胎压1.0MPa较0.7MPa的作用效果增大40%,随着荷载的继续增大作用效果将继续增大;沥青路面的主要承重部分为基层以下的结构体,面层材料的类型和力学参数对沥青混凝土路面力学响应影响相对较小.该研究可以为沥青路面的优化设计与力学分析提供一定的理论指导.  相似文献   

14.
为提高汽车的乘坐舒适性和行驶稳定性,对车辆主动座椅悬架提出一种基于多目标粒子群算法的滑模控制器设计方法。首先,在建立三自由度1/4车辆主动座椅悬架系统模型的基础上设计了满足李雅普诺夫稳定性理论的滑模控制器;其次,基于滑模控制到达条件和滑模面的稳定条件结合Hurwitz稳定判据选择合适的滑模面参数;然后,以汽车悬架动挠度、轮胎动载荷和控制器控制力输出为约束,形成以座椅质心垂直加速度、座椅悬架动行程以及轮胎动位移为控制目标的多目标优化问题,对滑模控制器参数进行优化设计;最后,在MATLAB环境下基于多目标粒子群算法进行求解,并进行数值仿真模拟。仿真结果显示,经过多目标参数优化后各目标值明显减小,表明基于多目标粒子群算法的滑模控制器参数优化显著地改善了汽车的乘坐舒适性和行驶稳定性,为汽车主动座椅悬架系统的研究提供了理论依据。  相似文献   

15.
针对唐山电动汽车重点实验室前期研制的微型旅游观光电动汽车在行驶时出现轮胎过大的磨损、自动回正作用较弱、转向沉重等问题,在机械系统动力学仿真软件ADAMS/View中建立此电动汽车的前悬架虚拟样机模型。对此模型进行平行轮跳动实验,来仿真分析其悬架系统参数的变化范围,进而分析其产生汽车不稳定特性的原因,为进一步对悬架系统优化和整车平顺性分析做铺垫。  相似文献   

16.
为了研究不同位移时滞反馈控制对车身减振性能的影响。以考虑轮胎阻尼的1/4车辆悬架模型为基础,分别构建车身位移时滞和轮胎位移时滞两种不同状态反馈控制,通过利用劳斯-赫尔维茨稳定性判据和多项式判别理论分别得到不同位移时滞反馈控制系统的稳定性区间。在优化参数范围和约束条件下,以车身加速度、速度和位移为优化目标,采用粒子群算法获得不同控制策略的优化参数。仿真结果表明,相同外部激励下轮胎位移时滞状态反馈控制有较大的稳定性区域和更佳的减振效果,可有效改善车身的振动响应,对进一步研究时滞状态反馈控制在车辆中的应用具有一定的参考价值。  相似文献   

17.
为深入研究机械弹性车轮侧向力学特性,基于理论及数值仿真的方法对车轮侧向刚度影响因素进行了分析.利用能量法建立了0轮单元侧向刚度理论模型,并得到影响车轮侧向刚度的主要因素.在简化机械弹性车轮结构的基础上,建立了车轮三维有限元模型,并验证了模型的有效性.针对不同垂向载荷、0轮几何结构参数以及橡胶层剪切模量,对机械弹性车轮进行了侧向刚度特性的仿真试验.计算结果表明:随着垂向载荷、橡胶层剪切模量的增大,车轮侧向刚度均增大;随着0轮断面高宽比的增大,车轮侧向刚度呈减小趋势.通过对车轮侧向刚度影响因素的理论及数值分析,可为优化车轮刚度特性及改进车轮结构等方面的研究提供参考.  相似文献   

18.
针对某型轮边驱动电动汽车,为提高车辆平顺性能,推导其动力学微分方程,在MATLAB/Simulink中建立1/4车辆平顺性仿真模型,在新欧洲行驶循环(new european driving cycle,NEDC)工况下,以车身加速度和车轮动载荷为指标,与吸振式轮边驱动电动汽车对比其平顺性能。针对吸振式轮边驱动电动汽车,以车轮最大振动位移的最小值为目标函数对其悬架与吸振器参数进行优化设计,并进行仿真对比。仿真结果表明,优化后的吸振式轮边驱动电动汽车车身加速度均方根值降低了8. 2%,车轮动载荷均方根值下降了0. 12%,明显改善了车辆平顺性能,对改进轮边驱动电动汽车的行驶平顺性能具有一定的指导意义。  相似文献   

19.
轿车行驶中转向轮定位参数呈非线性变化,若其变幅过大将影响操纵稳定和轮胎磨损。以定型轿车为目标研究定位参数变化规律,可实现定位结构参数优化。剖析目标车型结构及动态特性,在Hypermesh限元网格划分前处理软件中建立有限元横摆臂并进行处理,导入ADAMS(automatic dynamic analysis of mechanical systems)机械系统动力学自动分析软件中的Car模块建立符合动态实体的前悬架三维刚柔耦合模型。设置边界条件导入ADAMS/car进行模拟试验,确定优化目标。根据前悬架侧滑理论,进行了双滑板侧滑试验,得到车辆侧滑量与前束值的函数关系,并利用多项式回归方法对其验证。得到最佳匹配的前束角与外倾角,调整初始定位参数并进行试验,试验结果表明:前束角变化量下降19.09%,外倾角变化量下降39.94%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号