首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
新郑大桥改建新桥横向刚度分析   总被引:2,自引:0,他引:2  
针对新郑大桥改建后提速列车通过时,墩顶横向振幅超过《铁路桥梁检定规范》规定的通常值,建立列车一桥梁系统振动计算模型,运用列车脱轨能量随机分析理论,对该桥上列车走行安全性进行计算分析;在列车不脱轨的条件下,对桥上列车正常运行的平稳性进行研究;对墩顶横向振幅超《铁路桥梁检定规范》规定的通常值与行车安全的关系进行分析。研究结果表明:在车速不超过80km/h时,列车可以安全运行,平稳性也基本满足要求;将墩顶横向振幅通常值当成行车安全限值是不合理的。  相似文献   

2.
运用列车脱轨能量随机分析理论计算5座横向振幅超限桥梁列车走行安全性.基于脱轨分析理论,提出新的铁路桥梁横向振幅行车安全限值分析方法.具体步骤为:建立考虑一定误差系数的预防脱轨条件,确定桥梁横向刚度行车安全判别参数,确定预防脱轨的临界梁墩系统,计算梁墩系统横向振幅行车安全限值.运用此方法,计算提速线预应力混凝土T形梁桥横向振幅行车安全限值.研究结果表明:现有的桥梁横向振幅行车安全限值过于严格;提速线跨度为32 m和24 m的预应力混凝土T形梁桥横向振幅行车安全限值分别为L/3 980和L/4 411(L为桥梁跨度);取L/4 500作为提速线预应力混凝土T形梁桥横向振幅行车安全限值建议值.  相似文献   

3.
综述了列车脱轨的国内外研究现状;分析了脱轨研究中的主要问题为:各国制订的规范标准不能预防列车脱轨,未抓住主要矛盾,脱轨计算理论存在三个根本问题——列车轨道(或桥梁)时变系统振动方程组解的唯一性无保证,横向振动的激振源不清楚,该时变系统振动的随机分析问题未解决;提出了一条突破列车脱轨难题的能量随机分析道路、预防脱轨措施及抗脱轨安全系数的计算方法;计算了四个列车脱轨实例,计算结果均与实际发生的脱轨事故和脱轨试验测出的车辆振动响应符合。  相似文献   

4.
针对重载铁路常见桥梁结构特点,建立货物列车-轨道-桥梁系统(简称"FTTB系统")空间振动计算模型;按照列车脱轨能量随机分析理论,提出重载铁路FTTB系统横向振动稳定性分析方法。通过算例,计算圆形墩加固前、后FTTB系统横向振动稳定性及其振动响应。研究结果表明:算例中圆形墩加固后FTTB系统抗脱轨能力可提高50%;圆形墩加固前、后FTTB系统横向振动失稳临界车速分别为134.45 km/h和156.99 km/h,容许极限车速分别为107.56 km/h和125.59 km/h;圆形墩加固后货物列车以80 km/h车速过桥时平稳性有保证;与加固前相比,桥梁跨中和墩顶横向位移分别减小54.5%和83.8%。该分析方法能够同时反映货物列车脱轨信息和FTTB系统空间振动特性,可为桥上货物列车脱轨预防措施提供更加全面、科学的评价。  相似文献   

5.
在列车-桥梁时变系统横向振动能量随机分析理论的基础上,采用26个自由度的列车空间振动模型,以考虑箱梁翘曲影响的空间梁单元模拟桥梁结构,建立多线铁路箱梁桥列车-桥梁时变系统空间振动分析模型,分别以构架人工蛇行波及前苏联规律性的竖向不平顺函数为横向及蛏向激振源,计算列车以不同车速通过桥梁的空间振动响应,并对该大桥的竖向横向刚度做出评价。研究结果表明:在各种不同列车、不同行车情况下,列车走行舒适性均在“良好”标准以上;该桥具有足够的横向(横向位移为6.36mm)和竖向刚度(竖向位移为131.25mm)。  相似文献   

6.
为确定具有预防货物列车脱轨功能的轨道刚度合理值,基于列车轨道系统空间振动计算模型及列车脱轨能量随机分析方法,提出了货物列车-轨道(FTT)系统横向振动稳定性分析方法,分析多组扣件及道床横向刚度组合下FTT系统抗脱轨能力、FTT系统横向振动稳定性及其振动响应的影响.结果表明:FTT系统抗脱轨能力、临界车速及容许极限车速随着扣件及道床横向刚度的增大均有大幅度提高,但当扣件和道床横向刚度分别增大至90和10 MN/m时,其提高幅度逐渐减小,且当扣件和道床横向刚度分别由120 MN/m增至150 MN/m、15 MN/m增至20 M N/m时FTT系统抗脱轨能力、临界车速及容许极限车速仅提高了3.9%,1.8%和1.8%;另外,增大扣件和道床横向刚度有助于减小轨道横向位移.考虑日趋紧张的重载铁路市场竞争,建议扣件横向刚度取90~120 MN/m,道床横向刚度取10~15 MN/m.  相似文献   

7.
货物列车编组对列车-桥梁系统空间振动的影响   总被引:2,自引:0,他引:2  
基于列车、桥梁空间振动分析模型,利用弹性系统动力学总势能不变值原理及形成系统矩阵的“对号入座”法则,建立了列车-桥梁系统空间振动矩阵方程,采用Wilson-θ法求解。研究了5种不同货物列车编组对列车-桥梁系统空间振动响应的影响,得出了一些符合物理概念的桥梁振动响应时程曲线。研究结果表明:机车、车辆轴重是影响桥梁竖向振动位移的主因;空载货车作用下的车桥系统横向振动响应比重车的要大;全列空车编组及空重混编是影响列车-桥梁系统横向振动响应的不利编组,而全列空车编组更为不利;在进行桥上货物列车脱轨分析时,宜采用全列空车编组;通过改善列车编组的方法可以提高列车-桥梁系统振动性能。  相似文献   

8.
基于列车-轨道系统空间振动分析理论,考虑洪涝灾害的影响,建立洪涝灾害条件下列车-轨道系统空间振动分析模型。根据弹性系统动力学总势能不变值原理及形成系统矩阵的"对号入座"法则,建立此系统空间振动矩阵方程。运用列车脱轨能量随机分析理论,提出洪涝灾害条件下列车脱轨全过程计算方法,分别对该条件下直线和曲线路段列车脱轨全过程进行计算和分析。研究结果表明:洪涝灾害引起的货物列车在直线和曲线路段脱轨时转向架摇头角分别为0.20°和0.27°,转向架与钢轨之间的横向相对位移分别为52.8 mm和48.1 mm,相比直线路段,列车在曲线路段更易脱轨。这些研究结果可为研发机械式的列车脱轨报警器提供重要的理论依据和技术参数,进而确保该报警器能在列车脱轨时立即发出报警,使列车及时停车。  相似文献   

9.
列车-上承式桁梁桥横向动力分析   总被引:2,自引:0,他引:2  
将列车-上承式桁梁桥作为一个耦合的整体系统进行研究,上承式桁梁桥采用桁段有限元单元模拟,列车采用具有21个自由度的2系弹簧车辆空间振动模型,应用弹性系统动力学总势能不变值原理及形成矩阵的“对号入座”法则,建立列车一桥梁时变系统的整体横向振动方程,使用机车车辆轮对或转向架实测蛇行波为激振源,计算了一列货物列车以5种不同速度通过桐模甸上承式钢桁梁桥时的列车-桥梁系统的横向动力响应,计算结果表明:采用本文方法计算列车-桥梁系统的横向振动是切实可行的,这为研究上承式桁梁桥的横向刚度及研究高速列车-桥梁振动提供一种方法。  相似文献   

10.
以某三主桁三索面公铁两用双塔斜拉桥为研究对象,采用ANSYS软件建立了有限元模型,计算了桥梁的振动特性,计算分析结果表明该桥横向刚度相对较小。对于不同成桥索力情况,研究了索力对结构动力特性的影响。然后考虑到列车荷载的影响,将列车荷载以等效均布质量的形式加载桥上,对不同车辆荷载工况进行了动力分析。计算分析结果表明该桥成桥索力对结构振动频率影响不明显,横向振动影响甚微。列车荷载对结构竖向振动频率影响较明显,横向较小。  相似文献   

11.
提速线路轻型墩桥梁横向振幅过大严重影响过往列车的安全,通过对轻型墩铁路桥的现场振动测试,得到了桥墩的横向振动特性,给出了列车过桥时轮轨作用力的典型时程曲线和列车的脱轨系数及轮重减载率,为进一步研究轻型桥墩的横向振动机理提供了实测数据.  相似文献   

12.
主要研究脉动风与列车荷载同时作用下斜拉桥的横向振动问题。首先建立了横风作用下并考虑了轨道不平顺和车辆蛇行的车桥系统动力分析模型,推导了体系平衡方程组,编制了有关的计算机程序;根据Darvenport风速功率谱模拟产生脉动风样本,并将其作为系统的随机激励,在计算机上模拟列车过桥的全过程,按不同车速计算了桥梁跨中和桥塔的横向位移、加速度以及桥上车辆的横向振动加速度响应。以一铁路斜拉桥为例,着重讨论了在正常使用极限状态下当风速小于30m/s时的车桥系统动力响应的一些问题。  相似文献   

13.
为研究节点刚域对钢-混组合桁架梁桥行车动力响应的影响规律,以某新建桥梁为例,利用自主开发的TRBF-DYNA软件开展列车-轨道-桥梁耦合系统振动响应研究.分别采用有限元方法建立考虑节点刚域的轨道-桥梁子系统整体三维模型;采用多刚体动力学方法建立31自由度车辆子系统模型,应用轮轨空间滚动接触模型模拟轮轨间可分离的接触关系.首先分析了节点刚域对桥梁自振特性的影响;继而研究了节点刚域和行驶线路对列车走行性以及桥梁整体和局部杆件动力响应的影响.结果表明:考虑节点刚域显著提高桥梁刚度;同时,桥梁的竖向振动位移峰值和加速度峰值减小30.00%~35.15%;钢腹杆内力显著提升,其中弯矩会增大90.41%~224.02%;但节点刚域对列车行车安全性指标影响较小.双线行车较单线行车引起的桥梁动力响应显著增强,其中横竖向加速度峰值将分别增大114.29%和100%;钢腹杆的应力有所增加,但并非成倍增加.建议在研究钢-混组合桁架梁桥行车动力响应时考虑节点刚域的影响.  相似文献   

14.
轨道不平顺作为车-桥耦合振动的主要激励源,直接影响桥梁及高速列车运行的安全性和舒适性.为研究轨道不平顺中短波分量对列车-简支梁桥耦合系统动力响应的影响规律,以高速铁路32m简支箱梁为例,采用德国高速低干扰轨道不平顺谱生成轨道不平顺样本,建立了列车-轨道-桥梁耦合系统空间动力学分析模型.对比分析了5种不同最短截止波长的轨道不平顺样本对耦合系统振动响应的影响规律.研究结果表明:轨道不平顺样本中1m左右的短波长分量会显著增加轮轨力、轮重减载率、脱轨系数和桥梁跨中加速度,但对桥梁跨中位移、轮轨偏移量和车辆振动加速度的影响较小;1~2m的短波长成分是引起轮重减载率超标的主要因素,减少轨道不平顺中1~2m的短波长分量可以有效提高列车行车安全性指标.  相似文献   

15.
研究高速铁路双线简支梁桥的空间振动响应.建立了考虑双线简支梁在车辆蛇行和单线行车时的偏心荷载作用下车桥系统空间耦联作用的振动力学分析模型,以20m和48m简支梁桥为例,在计算机上模拟列车过桥的全过程,通过分析动力响应,得出了一些有工程意义的结论.  相似文献   

16.
研究用粘弹性阻尼器抑制铁路钢桥在列车通过时车—桥共振的方法,编制了用应变能法计算加入粘弹性阻尼器后附加模态阻尼比及列车与桥梁动力相互作用的计算机程序,利用仿真计算可模拟加入粘弹性阻尼器前后列车通过时钢梁的振动情况.仿真计算初步表明用粘弹性阻尼器抑制由于列车提速使中小跨度钢梁振动过大是有效的  相似文献   

17.
将列车-连续钢桁梁桥视为一个耦合的整体系统,采用桁段有限单元对连续钢桁梁桥进行离散,每节车辆采用具有21个自由度的二系弹簧车辆空间振动模型,列车与连续钢桁梁桥通过轮轨相互作用关系进行动力耦合,应用弹性系统动力学总势能不变值原理,建立列车-连续钢桁梁桥时变系统的整体振动方程;采用直接积分法计算了列车以不同速度通过2座连续钢桁梁桥时的桥上列车振动响应全过程,分析计算所得结果,可以得出2座桥梁行车安全的结论.  相似文献   

18.
为研究龙卷风作用下大跨度桥梁车-轨-桥系统动力响应及行车安全性,首先以Kou-wen三维模型模拟龙卷风速度场,基于准定常理论确定了移动龙卷风作用下车辆和桥梁风荷载时程. 然后,分别采用多体系统动力学和有限元理论建立列车和轨道-桥梁子系统动力方程,基于轮轨空间非线性接触建立风-车-轨-桥系统动力方程,并采用分离迭代法求解系统动力响应. 数值算例中,以某公路铁路两用斜拉桥为研究对象,通过风洞试验和CFD数值模拟确定车辆和桥梁气动力系数,分析了龙卷风移动路径、强度等级和行车速度对车-桥系统动力响应及列车行车安全性的影响. 结果表明:桥梁竖向振动响应比横向显著,且龙卷风竖向风速对桥梁竖向位移起控制作用 . 当车辆经过风荷载最大位置时,车辆的横向和竖向振动响应均达到最大值,且车辆动力响应受龙卷风荷载和桥梁动力响应共同影响. EF1级和EF1.3级龙卷风作用下,列车安全通过的车速阈值分别为180 km/h和114 km/h.  相似文献   

19.
将列车桥梁系统视为一整体,根据随机振动能量理论,以列车构架人工蛇行波和实测蛇行波为横向激振源,计算了准高速列车以不同的速度通过钢筋混凝土连续桥梁的振动反应,与测试结果比较,本文的计算结果是比较满意的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号