首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
采用共沉淀法制备了Ru/ZrO2·x H2O催化剂,研究了几种修饰剂对Ru/ZrO2·x H2O催化剂苯选择加氢反应性能的影响.结果表明在催化剂前驱体还原过程中,加入适量的硫酸锌可使环己烯得率达到43.4%;在苯-水反应液中加入适量的甲醇,能够使环己烯得率与未加入时相比增加3%;而一些助催化剂对Ru/ZrO2·x H2O催化剂的选择性影响各不相同.  相似文献   

2.
以苯选择性加氢制环己烯为模型反应,考察了Ru-Zn/ZrO_2催化剂制备过程中还原方式对催化剂催化性能的影响.运用TEM、SEM、BET等技术对催化剂进行了表征.评价结果表明,采用高压液相还原制备的RuZn/ZrO_2-3催化剂在苯选择加氢制环己烯反应中表现出高催化性能,当苯转化率为41%时,环己烯选择性达到了83.8%.TEM、SEM结果表明催化剂上Ru微晶呈高分散,有利于苯转化率的提高.BET比表面积25 m~2/g,RuZn/ZrO_2-3催化剂最可几孔径分布范围20~50 nm,有利于环己烯选择性的提高.  相似文献   

3.
采用并流沉淀法制备纳米Ru-Zn催化剂,并考察了反应温度和预处理等反应条件对Ru-Zn催化剂催化苯选择性加氢制环己烯性能的影响.结果表明,制备的Ru-Zn催化剂Zn与Ru的物质的量比为0.15,催化剂粒径集中分布在3.4 nm,比表面积为56 m~2/g. Ru主要以金属Ru存在,Zn主要以ZnO或Zn(OH)_2存在.随反应温度的升高,Ru-Zn催化剂的活性逐渐升高,环己烯的选择性先升高后降低. Ru-Zn催化剂催化苯选择加氢制环己烯的最佳温度为140℃.反应物苯的反应级数为1,苯选择加氢反应的活化能为65.20 kJ/mol.随预处理时间的增加,Ru-Zn催化剂的活性先逐渐降低后升高,环己烯选择性先升高后降低.预处理12 h的Ru-Zn催化剂表面最适宜生成环己烯,环己烯收率达到了56.4%.而且Ru-Zn催化剂具有良好的重复使用性能和稳定性.  相似文献   

4.
李万刚  石秋杰 《江西科学》2004,22(2):151-156
介绍了钌系催化剂在不饱和化合物选择性加氢反应中的应用,着重介绍了其在α,β-不饱和醛选择性加氢生成α,β-不饱和醇及苯选择性加氢生成环己烯的反应中的应用。讨论了载体、助剂等因素对主催化剂的影响。作为一种新型的催化剂,钌系非晶态合全催化剂由于其高活性和高选择性表现出良好的应用前景。  相似文献   

5.
采用OP-10/甲醇/苯/水构建的微乳反应体系,以骨架镍为催化剂,考察了反应温度、反应压力、反应时间以及V(水)∶V(苯)对反应选择性及转化率的影响。结果表明,乳化体系中苯选择加氢反应的最佳反应条件如下:反应温度为150℃,反应压力为4.0 MPa,V(水)∶V(苯)为3.0,反应时间为30 min。在此条件下,苯转化率达19.65%,环己烯收率为5.61%,环己烯选择性为28.55%。  相似文献   

6.
以棒状和花状ZrO_2为载体,采用化学还原浸渍法制备RuZn-ZrO_2催化剂,利用X线衍射仪(XRD)、N_2吸附-脱附、H_2化学吸附、扫描电子显微镜(SEM)和傅里叶变换红外光谱仪(FT-IR)等表征催化剂的物理化学性质,并考察催化剂在苯选择性加氢反应中的催化性能。结果表明:花状四方相Ru Zn-ZrO_2催化剂表现出最优的苯选择性加氢催化性能,不仅活性最高,而且环己烯选择性也最好,其较高的催化性能主要归因于高的Ru粒子分散度和高的饱和吸水量,这些物化性质依赖于ZrO_2载体的独特形貌和晶相。动力学分析表明,苯加氢生成环己烯的反应速率常数(k_1)与环己烯加氢生成环己烷的反应速率常数(k_2)的比值与环己烯收率呈正相关。  相似文献   

7.
采用沉淀法制备了Ru-Fe/ZrO2催化剂,通过X射线光电子能谱、BET比表面积测试法、H2程序升温还原和H2程序升温脱附等方法对其进行了表征。研究结果表明:催化剂表面的Ru物种以元素态形式存在,催化剂中有Fe2O3形式存在。Fe的引入,使催化剂平均孔径增大,比表面积明显减小,Ru-Fe/ZrO2催化剂不但吸附了更多氢气,且更有利于环己烯的脱附,从而有效地提高了选择性。在苯液相加氢制备环己烯的反应中,反应20 min时苯转化率为75.64%,环己烯的选择性为55.87%。  相似文献   

8.
环己烯是一种重要的有机化工原料 ,传统的制备方法是通过环己醇脱水而来 ,2 0世纪 30年代 ,Truffault认为 ,环己烯是苯催化加氢制环己烷的中间产物 ,在适宜的反应条件下可以得到环己烯。 1957年 ,Anderson在Ni催化苯加氢时检测到了环己烯 ,在以后的 30年里 ,这一环己烯合成路线得到广泛的研究 ,特别是在 1988年 ,日本已成功地通过这一条路线进行工业化生产 ,标志着苯部分加氢制环己烯进入一个新时代。苯部分加氢制环己烯在工业上具有很重要的意义 :以环己烯为原料生产尼龙 6和尼龙 66,具有生产工艺简化 ,降低生产成本的…  相似文献   

9.
采用沉淀法制备了Ru-Fe/ZrO2催化剂,通过X射线光电子能谱、BET比表面积测试法、H2程序升温还原和H2程序升温脱附等方法对其进行了表征。研究结果表明:催化剂表面的Ru物种以元素态形式存在,催化剂中有Fe2O3形式存在。Fe的引入,使催化剂平均孔径增大,比表面积明显减小,Ru-Fe/ZrO2催化剂不但吸附了更多氢气,且更有利于环己烯的脱附,从而有效地提高了选择性。在苯液相加氢制备环己烯的反应中,反应20min时苯转化率为75.64%,环己烯的选择性为5587%。  相似文献   

10.
考察二氧化锆载体焙烧温度对苯选择加氢Ru-Fe-B/ZrO2催化剂催化性能的影响.研究发现,随焙烧温度的升高,载体比表面积减小,孔径增大,单斜相含量增加,且随载体焙烧温度升高,催化剂活性降低,而环己烯选择性升高.催化剂的活性降低是由载体的比表面积减小造成的.而环己烯选择性升高不但与载体比表面积减小有关,而且还与载体的孔径增大和富含羟基的单斜相增加有关.这表明具有适中比表面积、中孔结构甚至含有部分的大孔单斜二氧化锆是苯选择加氢催化剂的理想载体.  相似文献   

11.
采用沉淀法制备了Ru-Fe/ZrO2催化剂,考察了Fe/Ru、Ru的不同负载量和沉淀温度等因素对催化剂性能的影响,并对催化剂的循环使用情况进行了研究。对催化剂进行性能测试,在苯的转化率为34.70%时,环己烯选择性可达77.52%。XRD表征显示催化剂为晶体特征,活性组分在载体表面高度分散。  相似文献   

12.
Zn对苯选择加氢制环己烯Ru催化剂性能的影响   总被引:3,自引:0,他引:3  
采用共沉淀法制备了苯选择加氢制环己烯无负载Ru-Zn催化剂.Ru催化剂中Zn的引入,有利于降低苯的转化率和提高环己烯的选择性;Zn/Ru摩尔分数比对催化性能有明显的影响,当x(Zn)/x(Ru)=0.08时,环己烯的收率达49.1%.利用XRD和H2-TPR对其结构进行了表征,结果表明,Ru催化剂中添加Zn后,当Zn含量低时,Ru和Zn形成了固溶体;随着Zn含量的增加,Zn物种单独成相,并发现有元素态Zn的存在.  相似文献   

13.
苯选择加氢制环己烯无负载Ru-Zn-B催化剂的研究   总被引:1,自引:0,他引:1  
以NaBH4为还原剂用化学还原法制备了无负载Ru-Zn-B催化剂.探讨Zn含量、加料方式和洗涤等制备条件对催化剂性能的影响.研究结果表明,当Zn含量为10%、采用反加法、洗涤至pH值为7.5时制备的催化剂具有较好的活性选择性.XRD分析表明,催化剂为非晶合金结构.  相似文献   

14.
共振能是结构化学和有机化学中的基本概念,用来衡量一种共扼分子的稳定性,其值一般可以通过量子化学计算得到。本实验通过测定苯、环己烯和环己烷这三种物质的燃烧热,利用燃烧热数据运用差值法估算苯的共振能为84.2 K J/m o l,说明苯分子共轭后稳定性增强。  相似文献   

15.
提出一种利用反应精馏并加入异佛尔酮作为助溶剂的新方法生产环己醇.反应原料环己烯和水以及助溶剂异佛尔酮进入反应精馏塔RDC,RDC釜液再经过两个精馏塔(PDC1和PDC2)进行纯化分离得到高纯度的环己醇和可以循环使用的异佛尔酮.选用NRTL物性计算方法,使用Aspen Plus流程模拟软件对设计流程进行模拟计算,最终可得到摩尔分数为99.9%的高纯度环己醇产品以及可循环使用的异佛尔酮,系统能耗为0.982 3k W.在此计算结果的基础上,研究反应精馏塔中异佛尔酮和环己烯、水和环己烯的摩尔配比,以及塔压对环己烯转化率和系统能耗的影响,对整个工艺流程进行了优化,并和其他工艺的环己烯转化率进行了比较.  相似文献   

16.
以稀土改性固体超强酸SO42--La2O3-TiO2为多相催化剂首次报道由环己醇合成环己烯,考察了SO42--La2O3-TiO2的用量对催化反应的影响及重复使用性能.在最佳条件下,环已烯收率达到78.0%  相似文献   

17.
固体超强酸SO4^2-La2O3-TiO2催化合成环己烯   总被引:2,自引:0,他引:2  
以稀土改性固体超强酸SO4^2-La2O3-TiO2为多相催化剂首次报道由环已醇合成环G烯,考察了SO4^2-La2O3-TiO2的用量对催化反应的影响及重复使用性能.在最佳条件下,环已烯收率迭到78.0%  相似文献   

18.
以4,4’-二氨基二苯醚为A2单体,均苯三甲酸为B3单体,溶液缩聚合成摩尔比为2: 1的A2+B3型超支化聚酰胺,并对其进行改性,将端基转变为乙烯基,再通过热交联反应,加入甲基丙烯酸控制交联度,从而制备出了5种不同交联度的超支化聚酰胺.分别将其作为钌纳米簇的载体,最终得到相应5种不同交联度超支化聚酰胺负载钌杂化膜催化剂,用FT-IR、1H NMR、SEM、XPS等对杂化膜催化剂表征,研究了其在苯加氢反应中的催化性能.结果表明:随着交联度的增加,苯的转化率逐渐升高,环己烯的选择性也呈上升趋势.  相似文献   

19.
直接合成法制备了NH2-MCM-41,进而负载Ni、Co、Mn(Salen)配合物制备了催化剂.采用傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)对催化剂进行了表征.将这些催化剂用于以H2O2为氧化剂的环己烯环氧化反应,结果表明:与Ni(Salen)/MCM-41和Co(Salen)/MCM41相比,Mn(Salen)/MCM41具有较高的反应活性.以Mn(Salen)/MCM41为催化剂,获得了优化的反应条件:在n(C6H10)/n(H2O2)=3、20mL乙腈为溶剂、反应时间4h的条件下,环己烯转化率为8.0%,选择性为47.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号