首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
高速列车转向架部位气动噪声数值模拟及降噪研究   总被引:1,自引:0,他引:1  
基于Lighthill声学理论,采用三维、LES大涡模拟和FW-H声学模型对高速列车转向架部位气动噪声进行数值模拟,并提出降噪改进意见.研究结果表明:转向架部位气动噪声在很宽的频带内存在,无明显的主频率,是一种宽频噪声;各监测点气动噪声频谱在低频时幅值较大,随着频率的升高,幅值下降,1/3倍频程A声压级主要集中在315~1 250 Hz频率范围内;当来流速度一定时,距离气动噪声源越远,声压级幅值和总声压级越小;在列车转向架部位设置裙板后,运行速度为300 km/h时,车外声压级幅值较无裙板时有所减小,平均降幅约为8%,总声压级平均降幅1.3 dBA;适当增加裙板面积后,声压级幅值平均降幅达到12%,总声压级平均降幅2.08dBA,降噪效果较明显.  相似文献   

2.
韩斐  周毅 《科学技术与工程》2022,22(34):15103-15114
受电弓作为高速列车主要噪声源之一,是一个包含许多部件的复杂结构。为研究受电弓气动噪声的主要噪声源以及远场气动噪声特性,基于计算流体力学开源软件OpenFOAM,采用大涡模拟结合K-FWH方程的联合方法,探究受电弓在250 km/h、300 km/h和350 km/h等不同速度下运行时的流场及气动噪声特性。通过模拟受电弓在不同速度以及不同开口状态下的运动,得到受电弓的频谱特性以及噪声源分布规律。结果表明,高速列车受电弓引发的远场气动噪声主要是低频和中频噪声,并且噪声频谱具有明显的主频。而远场噪声指向性方面,受电弓产生气动噪声具有偶极子特性,噪声主要向尾流斜上方传播。受电弓不同开口方向,所诱发的噪声声压级并不相同,闭口状态诱发的声压级更大。研究结果能为日后降低高速列车受电弓气动噪声的研究以及工程降噪问题提供理论参考。  相似文献   

3.
摘要:建立某型列车气动噪声计算模型,基于标准湍流模型和大涡模拟(LES)计算车外瞬态流场,用FW-H方程预测了列车远场气动噪声。分别计算了列车整体、车体、受电弓、转向架为噪声源时对外辐射噪声的总声压级和贡献度,并对不同噪声源产生的气动噪声频谱特性进行了分析。计算结果表明:受电弓滑板处具有最大的总声压级,其次在车头和头、尾车转向架处较大;车体和转向架对列车远场噪声贡献度较大,而受电弓对其附近区域噪声贡献度大于远场;车体和转向架噪声主频在400Hz~1250 Hz,而受电弓主频出现在500Hz,且低频噪声幅值很小。列车整体对远场的辐射噪声,与利用车体、受电弓和转向架为噪声源得到的远场噪声叠加相吻合,验证了计算的准确性,对噪声的计算研究有一定的参考价值。  相似文献   

4.
高速列车受电弓气动噪声特性分析   总被引:1,自引:0,他引:1  
以某高速列车受电弓为研究对象, 探讨其在350 km/h速度下的气动噪声特性。采用延迟脱体涡模拟(DDES)和声学有限元(FEM)相结合的方法, 分析带导流罩受电弓在升起和下降状态下, 近场和远场气动噪声空间分布规律和频谱特性, 研究流场计算时不同建模方式对诱发噪声幅值和指向性的影响以及壁板的反射和散射作用对噪声频谱特性的影响。结果表明: 1) 在本文选取的受电弓外形和开口方向下, 降弓和导流罩诱发噪声略大于升弓和导流罩诱发噪声; 2) 导流罩在低于300 Hz的低频区诱发噪声比例较大, 而受电弓在300 Hz后诱发噪声影响较大; 导流罩诱发噪声在升弓情形时所占比例相对较大; 3) 在指向性上, 导流罩诱发噪声在受电弓前部贡献较大, 受电弓诱发噪声在后部区域贡献较大; 在列车正上方区域, 弓体诱发噪声大于导流罩诱发噪声, 是主要的气动噪声源。  相似文献   

5.
随着我国高速动车组运行速度的不断提升,其产生的噪声对乘客舒适度及周边环境的影响也日愈严重。列车运行时,其噪声源主要包括振动噪声、气动噪声和牵引电机等设备产生的噪声。利用ANSYS的FLUENT流体力学分析模块,建立了350 km/h下受电弓三维有限元仿真分析模型,求解了列车不同运行速度下受电弓表面脉动压力及环境中的噪音强度。研究成果为抑制列车高速运行时受电弓的产生的噪音污染提供了一定的理论基础。  相似文献   

6.
CRH3型高速列车气动噪声数值模拟研究   总被引:4,自引:0,他引:4  
采用非线性声学求解方法(NLAS)进行近场气动噪声研究, 通过一个二维后台阶算例进行了方法验证, 与实验数据符合良好。在噪声源周围建立噪声面, 并利用FW-H方程进行远场噪声评估。对CRH3型高速列车在300 km/h速度下运行进行了气动噪声分析, 着重考虑车体几何对气动噪声的影响。首先对高速列车在RANS计算下的统计结果进行分析, 研究高速列车关键部位如头部、车厢连接处、尾部等的流场特征。进而通过在列车表面特征位置设置测点, 研究车体不同部位对气动噪声产生的贡献。通过在远场设置噪声测点, 分析了CRH3型高速列车的远场气动噪声特性, 并对噪声水平进行了评估。  相似文献   

7.
为分析高速列车车内低频噪声主要来源,利用振动声辐射理论研究了车内声场特性与内饰板振动的关系.实验室半实物试验结果表明,内饰板振动和车内声场耦合响应特性在空气声和结构声传播过程中具有普遍适用性.应用该方法对某高速列车不同速度级、明线和隧道运行条件下的车内噪声特性进行分析.结果表明,列车运行速度越高,内饰板低频振动幅值增加越显著,这导致车内低频噪声的峰值更加突出.对于350km·h~(-1)速度工况,明线工况的低频噪声峰值主要来源于地板结构声辐射,而隧道环境下的噪声增加主要来源于侧墙和车顶结构的声辐射,并对各面板贡献度进行了定量化计算.最后,用工况噪声传递路径分析(OTPA)方法开展了噪声源贡献度定量化计算,结果表明,气动噪声所占比重最大,但振动激励的总和达60%,尤其是160Hz的峰值频率处,风机振动激励的贡献度最大.  相似文献   

8.
为探究高速磁浮列车气动噪声特性,以TR08高速磁浮列车为研究对象,考虑空气的可压缩性,采用分离涡模拟(DES)计算列车周围瞬态流场,基于Lighthill声比拟理论,采用声学有限元方法进行气动噪声数值计算。通过对比在线实车试验数据与数值仿真计算结果,验证了数值计算模型的准确性。研究表明,高速磁浮列车气动噪声是一种宽频带噪声,噪声源主要分布在头车和尾车流线型肩部等气流分离及湍流剧烈的区域。当列车运行速度为600 km·h-1时,距离轨道中心线25m、轨面以上3.5m处列车通过时间内等效连续A声级达到107.5dB(A),噪声峰值位于中心频率为1 600Hz的1/3倍频程频带内,为101.9dB(A)。  相似文献   

9.
针对采用声屏障时,高速列车运行过程中表面气动阻力较大的问题,提出利用减载式声屏障降低列车运行过程中受到的气动阻力.采用数值模拟方法,对采用不同孔隙率声屏障时高速列车运行过程中表面的气动阻力及其影响因素进行研究.利用Gambit软件建立了声屏障与高速列车相对运动计算模型;在声屏障孔隙率不同时,采用Fluent软件对350 km/h速度行驶的高速列车表面压强分布和气动阻力进行了数值模拟与分析研究.研究结果表明:与普通声屏障相比,随着减载式声屏障孔隙率的增加,列车头车高压区和尾车低压区的面积减小,列车行驶的压差阻力降低,而摩擦阻力变化不大;减载式声屏障具有一定的节能效果,并且随着减载式声屏障孔隙率的增大,节能效果更加明显.  相似文献   

10.
建立了高架线和路堤两种不同路况下侧风作用于列车的空气动力学模型,并进行数值计算,得到了不同侧风速和不同运行速度下列车周围压强分布及列车的气动载荷特性;同时利用SIMPACK建立高速列车动力学模型,将分析得到的气动载荷施加到动力学模型上,计算列车运行的动力学特性,研究侧风对列车运行安全性的影响;参照高速列车运行安全性相关限定指标,计算了高速动车组侧风环境下的安全行车速度。  相似文献   

11.
建立了某高速列车头车-轨道的耦合动力学仿真模型、车身的有限元模型、乘客室的声学边界元模型,计算出了由轨道不平顺引起的乘客室内的噪声分布状况,得出了如下结论:当列车运行速度为200km/h时,乘客室内的A声级在61.9~69.6dBA之间变化;乘客室内A声级较大的场点在40Hz、200Hz频率处的声压级较大;要降低乘客室内的噪声,必须对总声级起决定作用的频率段(40Hz、200Hz)采取措施。针对40Hz的低频噪声,最好在声学贡献最大的面板上采取阻尼降噪措施;针对200Hz的中频噪声,则宜在声学贡献最大的面板上敷设一层在该频率上吸声性能好的吸声材料。  相似文献   

12.
针对高速列车外流场气动噪声完成了在线实验测试研究,对列车模型进行了简化并确定了合理性;进行了列车模型湍流流场模拟,完成了列车远场气动噪声的预测研究.研究表明,合理缩短列车不会改变车身表面声功率分布规律;高速列车气动噪声属于宽频带噪声;在频率范围(0~ 5000Hz)内气动噪声仿真与实验结果吻合较好,说明仿真方法准确度高;列车转向架处湍流最为剧烈,其次为车头鼻锥处;车身表面的气流最为平缓,进一步说明缩短列车模型的合理性.所提出的仿真方法能够为高速列车的结构优化设计提供依据,并能验证高速列车气动噪声控制方法的有效性.  相似文献   

13.
壁面气动压力长期循环作用是高速铁路隧道衬砌掉块的重要诱因,为研究高速列车行驶速度对壁面气动压力基本特征的影响规律,采用三维数值仿真模拟对隧道典型位置(入口段、洞身段以及出口段)壁面气动压力进行研究。结果表明:列车车头经过使得监测横断面气动压力差异性增强,表现出显著的三维特征。隧道入口段气动压力三维特征主要受压缩空气所占体积大小以及与隧道入口之间距离的影响,气动压力三维特征随着进入隧道入口距离的增加而减弱,并逐渐向一维特征转变。列车车头驶入隧道入口后,车尾驶出隧道出口前,洞身段不同测点位置的气动压力正峰值主要受车头进入隧道入口诱发压缩波的影响,纵轴中断面测点气动压力负峰值与峰峰值大于洞口段。车尾驶出隧道出口后,出口段测点气动压力负峰值大于入口段,正峰值小于入口段。隧道出口段气动压力三维特征与入口段相似,但列车行驶速度以及测点与隧道出口之间距离对气动压力三维特征的影响机制更为复杂。  相似文献   

14.
为了得到底部结构对列车流场及气动阻力优化规律的影响,通过计算流体力学和正交试验设计分析的方法,研究真实复杂车体的底部流动和尾迹特征,得到了复杂车体气动阻力优化规律.结果表明,尾车鼻尖静压系数在底部结构影响下降低了0.06,尾车流动分离提前,两反对称尾涡核间横向距离增大,尾涡间夹角增大.头型概念设计时的拓扑简化车体模型可以作为真实复杂车体的气动阻力优化设计模型,但考虑底部结构使得头车参数优化的极差值减小、尾车参数的优化极差值增大.头车阻力优化重点为转向架周边结构,尾车阻力优化对流线型长度参数更加敏感.  相似文献   

15.
研究以基本气动噪声源(单极子声源、偶极子声源和四极子声源)向远场辐射声功率和物体运动过程中产生的气动噪声与运动速度、物体特征尺寸、距观测点距离和介质特性等的关系,推出了相似运动物体向远场辐射气动声的相互转换关系式,并利用气动声学风洞对高速列车模型产生的远场气动噪声进行测量,据此关系式从低风速测量结果推出了高风速结果,用试验数据进行验证.研究表明,此关系式反映了原型和模型之间在远场辐射气动噪声的相互关系,对模型试验结果分析和向原型的转换具有一定的借鉴作用.  相似文献   

16.
为了给高速列车风洞侧风试验的模型选取提供更多的参考依据,采用计算流体力学(Computational Fluid Dynamics,CFD)方法对不同模型以200km/h速度运行时,在不同侧向风速下的气动力和流场结构进行分析.结果表明:相同侧向风速下,不同的高速列车缩比模型对头车的气动力系数影响不大,可以采用更短编组长度的高速列车模型即1.2车模型(头车+0.2节尾车)代替3车联挂模型对头车的气动特性进行风洞试验研究;考虑到尾车结构对头车末端区域的流场结构和压力分布的影响,高速列车风洞侧风试验中,不建议采用更短编组方式的模型.  相似文献   

17.
针对高速列车的头车进行全尺寸三维模型和流场流域的创建,并通过k-ε湍流模型计算稳态流场;在稳态流场的基础上,采用宽频带噪声模型计算头车表面的气动噪声源;利用大涡模拟(LES)方法计算瞬态流场,进而获取车身外表面的脉动压力;再基于瞬态流场,采用Lighthill声类比理论研究头车远场气动噪声的计算.最后,比较气动噪声的仿真分析结果与实地试验结果,验证了仿真结果的正确性.  相似文献   

18.
高速列车的转向架区域是气动减阻研究的重点.通过样条曲线方法建立了高速列车底部结构的7参数化模型,采用计算流体力学及超拉丁立方抽样试验设计方法,研究了底部结构参数对高速列车气动阻力的影响规律.结果表明:底部结构参数对于三车总阻力、头、中、尾各节车气动阻力的影响分别为27%、37%、39%和22%,三车气动阻力对裙板高度、排障器厚度、舱前缘倒角最为敏感.但头、中、尾车影响规律不同于三车,有必要考虑对头、中、尾三车底部结构分别进行气动设计,以达到最优的减阻效果.底部结构参数主要影响列车底部平均流速改变底部结构所受气动阻力,进而影响高速列车气动阻力.  相似文献   

19.
长大编组高速列车横风气动特性研究   总被引:2,自引:0,他引:2  
采用定常RANS方法, 对长大编组高速列车的横风气动特性进行分析, 从流场特性和气动力特性两个方面开展研究。结果表明, 横风条件下, 列车表面流动现象非常丰富, 列车首尾流线型存在较多流动分离、再附等现象, 且受横风侧偏角影响较大。在列车背风侧出现两个以上的复杂分离涡系, 从列车头车下部开始, 向列车下游发展并逐渐远离列车车体。分离涡系是列车承受非定常气动力的根源。列车头车是侧向力、滚转力矩最严峻的车厢, 且随着横风侧偏角增大, 侧向力、滚转力矩逐渐增大, 列车行车环境逐渐恶化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号