首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
以高速列车为研究对象,利用有限元法建立其车身结构和车室空腔模型,并建立车室声固耦合模型,计算出考虑声固耦合时车身模态与相应的结构模态,经分析得出:车室声腔对车身的作用不能忽略。为了了解高速列车的车内噪声情况,在高速列车上进行了现场噪声测试,得出车体振动主要引发车内中低频段噪声。另外,在考虑车身内饰和座椅吸声性能情况下,对车内噪声进行仿真和计算,获得了车内噪声的声场分布情况,从而可以指导高速列车车体结构的低噪声设计,节约产品研发时间及成本。  相似文献   

2.
针对轨道不平顺引起地铁车辆车体壁板振动产生的车内低频结构噪声问题,建立了铝合金地铁车辆车体结构有限元模型、车内声场边界元模型和车辆轨道耦合模型,进行了动力学分析,得到轨道随机不平顺激励下,车体所受激励载荷并施加于车体结构的有限元模型,在ANSYS软件中进行了车体结构谐响应分析,得到车体振动响应.将得到的车体振动响应作为边界条件传递给车内声场边界元模型,在SYSNOISE软件中计算了频率0~200 Hz范围内车内不同位置的低频结构噪声分布特性.结果表明:车内最大声压级超过75 dB;车体结构特点以及激励载荷情况直接影响车内结构噪声特性;减少轮轨激励载荷或优化车体结构,均可降低车内结构噪声.  相似文献   

3.
基于车身板件声学贡献分析的声振优化   总被引:1,自引:0,他引:1  
以降低车内低频结构噪声为目标,优化车身板件.采用子结构模态综合的方法建立结构动力学模型,并以其在实车工况下的振动响应作为声学边界元模型的边界条件,以车内驾驶员右耳位置为目标响应点,结合计算得到的声传递向量,对汽车车身进行板件声学贡献分析.通过计算得到车身各板件对车内噪声的声学贡献,分析出影响比较显著的关键面板,根据分析结果对车身相应板件进行振动抑制.经试验验证,怠速工况下,车内噪声在频率为20~100 Hz范围内的声压级水平得到比较明显的改善,主要峰值频率最大降幅5.70 dB,整体噪声水平下降了3.89 dB.结果表明:板件贡献分析方法可以为控制车内低频噪声提供合理的建议.  相似文献   

4.
地铁车辆车体壁板振动辐射形成车内结构噪声,直接影响旅客乘坐舒适性.分析车体壁板声学贡献度可以确定对车内噪声影响较大的壁板位置,进而针对性地修改车体壁板结构,以改善车体壁板振动特性、降低车内结构噪声.运用声传递向量(ATV)技术分析了铝合金A型地铁车辆车体壁板的声学贡献度,确定了影响车内结构噪声较大的壁板位置.  相似文献   

5.
搭建了整备状态下的某高速列车动力车厢有限元模型,包括白车身、内饰件和牵引传动系统.提出了多物理场激励耦合作用下的高速列车车内结构辐射噪声分析方案,分别采用刚性多体动力学、边界元法和大涡模拟获取了二系悬挂力、轨道噪声和车体表面压力脉动,与车体模态耦合后得到车体结构的振动响应.完成了时速350,km/h下的列车搭载试验和车体结构响应计算,在地板上随机选取了一个振动测点,仿真与试验得到的振动速度级曲线趋势和幅值具有较高的一致性,验证了仿真模型与多物理场耦合激励的精度.最后采用耦合边界元分析了耦合激励下的车内结构辐射噪声.  相似文献   

6.
针对装载机驾驶室中难以处理的低频噪声问题,分别建立结构声和透射声声场仿真模型,并进行驾驶室车内结构声和透射声数值仿真.同时验证驾驶室模型建立的准确性,确定驾驶室车内声场与结构声和透射声的关系,最后进行装载机驾驶室低噪声控制设计.结果表明,通过考虑可行性、经济性和轻量化,优化设计了驾驶室吸声和阻尼处理.以驾驶室人耳声压频响曲线为目标,对重要板件的厚度进行设计,改变了驾驶室结构模态与声场的耦合和隔声特性.从而使得驾驶室内噪声最高声压级降低了3.37 d B,总声压级降低了2.93 d B,取得了良好的低频声控制.  相似文献   

7.
以有限长加筋板和敷设阻尼加筋板为对象,通过模型试验分析了单频激励和白噪声激励下的加筋板在空气中、水中的振动和声辐射,针对计算模型开展相应的数值分析.结果表明:加筋板敷设阻尼层后,结构的振速级峰值左移.阻尼层在整个频带体现出较好的抑振降噪效果,但在低频区降噪效果不明显,甚至在局部频点出现失效区.在同等激励条件下,其辐射声压级普遍降低.数值分析进一步验证阻尼层对抑制振动与声辐射非常有效.  相似文献   

8.
离心风机蜗壳振动声辐射的定量预测   总被引:1,自引:0,他引:1  
针对离心风机蜗壳振动产生的声辐射,提出了一种基于边界元分析的声辐射定量预测方法:根据蜗壳声辐射的边界元模型布置振动测点,测量其法向振动的加速度谱;提取加速度谱中峰值较高的基频和旋转频率分量,并将其转换成速度谱后加栽于数值模型的对应节点上,作为声辐射问题的速度边界条件;利用边界元法计算声场及声功率,预测蜗壳振动产生的噪声.结果表明:结构振动声比气动声小很多,相对于风机进出口的气动噪声而言,蜗壳因振动辐射的噪声可以忽略不计;当风机进出口安装消声器后,蜗壳振动的辐射噪声可能成为主要噪声源.基于边界元分析的蜗壳振动辐射噪声定量预测方法也可以应用到其他壳体振动辐射噪声的预测中.  相似文献   

9.
以高速列车的内部带三角形空腔的四边固支铝型材外地板为研究对象,采用有限元方法对其进行结构振动特性和声辐射特性研究。重点探究了结构在20 Hz~800 Hz的中低频区域内,不同加筋位置对板结构振动声辐射特性和隔声量的影响。研究结果表明:在中低频范围内,铝型材板加筋后,其辐射声压和声功率能得到很好的抑制效果,在下底板加筋时的抑制效果最为明显,其声学性能最;加筋对铝型材板结构隔声量的影响不明显。  相似文献   

10.
为了探索轮胎振动辐射声场特征,基于实测得到的轮胎几何参数和材料参数,建立了P215/70R14型轮胎的有限元模型.将模态分析结果导入边界元软件,求解了轮胎在径向力激励下的辐射效率、辐射声功率、表面方均根振动速度、激励点法向声强及轮胎声场指向性.结果表明,在yOz平面(x轴为轮胎的对称轴)频率为61 Hz处,轮胎声辐射接近偶极子的辐射声场.在频率为451 Hz处,轮胎声辐射接近四极子的辐射声场.当频率高于451 Hz并继续升高时,声场指向性趋于复杂.该结果为进一步探讨轮胎在真实激励条件下辐射噪声的计算奠定了基础.  相似文献   

11.
结合有限元法(FEM)和边界元法(BEM),采用虚拟样机技术对内燃机噪声辐射的频域特性进行预测分析.其步骤为:用有限元软件ANSYS进行结构动态特性分析;建立机体、曲轴和连杆、活塞等组成整机多体动力学模型,求解传递给机体的各种激励力;采用声学分析软件SYSNOISE建立机体的边界元模型,分析其表面振动速度与声场间的声学传递向量(ATV).研究结果表明:在额定工况下,其机体裙部是主要噪声辐射部位;辐射声功率级较突出的峰值频率与整机固有频率基本对应,在中高频段其噪声辐射效率比低频段的高.  相似文献   

12.
基于有限元方法结合声学分析软件Virtual.Lab Acoustic建立高速列车铝型材外地板加筋板结构分析模型,完成了外地板结构模态振动特性和板结构声辐射特性分析。重点研究无阻尼条件下边界条件、面板厚度和激励位置对外地板结构模态振动特性和声辐射特性的影响。研究结果表明:板结构加筋后其刚性显著增强;外地板结构边界条件变化对板结构振动声辐射特性影响较小,后续计算采取两端面简支约束;面板厚度增加,刚性增强,使结构截止频率向高频移动,使得外地板结构声辐射能力减弱;激励位置远离板结构中心时,也能够有效减弱外地板结构声辐射能力,可考虑实行区域化划分安装。  相似文献   

13.
为确认影响拖拉机驾驶员耳旁噪声的主要振动模态,建立了拖拉机驾驶室声场中声压值与结构模态及模态声学贡献度数值的计算模型.利用驾驶室声-固耦合有限元模型进行仿真,分析了驾驶员耳旁噪声各频段峰值处的各阶模态贡献度值,并确认了峰值处的主导振动模态;利用主导振动模态来指导驾驶室主要振动模态的整改,且对主要模态整改前后驾驶员耳旁噪声声压级进行了对比.结果表明:驾驶室主要模态的改进可明显降低驾驶员耳旁噪声信号峰值,且峰值所在频段内的声压级也有所降低,可以实现分频段控制噪声,有效降低噪声.  相似文献   

14.
为了研究加环肋轴对称壳的声振特性,建立了计算两端带半球帽圆柱壳水中声辐射的有限元与边界元三维模型,分析了加肋高度、宽度、数量对轴对称壳表面平均振动速度、辐射功率、辐射效率、激励点法向声强、声场指向性的影响.应用有限元软件Ansys建模及模态分析方法,将数据导入边界元软件Sysnoise中计算,从而分析结构耦合状态下的辐射声场特性.结果表明,随着环肋高度、宽度及数量的增大,激励点法向声强、表面平均振动速度以及辐射效率和辐射声功率随频率变化曲线的峰彼此错开;环肋高度、宽度、数量增大时激励点法向声强以及辐射声功率均有增加,表面平均振动速度减小,因而导致声辐射效率增加;在0~800Hz频率范围内,环肋高度和宽度变化对声场指向性影响差别较小.  相似文献   

15.
利用有限元(FEM)/边界元法(BEM),建立了桨-轴-船尾部结构耦合振动模型,以实效伴流场下的螺旋桨轴承力作为激励源,分析了螺旋桨不同方向轴承力对尾部结构声振特性的影响.研究结果表明:在螺旋桨轴承力的作用下,船体结构振动响应峰值与螺旋桨倍叶频(BPF)或尾部结构固有频率相近;尾部结构水下辐射噪声特性随频率变化明显,当频率较低时,尾部结构的辐射噪声沿船长的分布相对均匀;随着频率升高,尾部结构的局部声辐射特性增强;水平力为引起船体结构振动并向外辐射噪声的主要分量.  相似文献   

16.
等效约束下风激励汽车前侧窗玻璃声辐射分析   总被引:1,自引:1,他引:0  
为研究风激励下汽车侧窗玻璃表面湍流压力脉动激起玻璃振动而向车内辐射噪声的问题,以某试验车左前侧窗玻璃系统为研究对象,首先基于等效原理,将车窗密封条等效成系列弹簧约束,进行离散化建模,并搭建Matlab-Abaqus联合仿真优化平台,得到最佳等效弹簧刚度,建立侧窗系统约束边界等效模型.接着利用Corcos模型计算得到侧窗表面湍流压力脉动的功率谱密度,作为侧窗等效模型的激励,应用有限元方法计算车内驾驶员人耳处的声辐射.最后应用激光测振仪,获得侧窗表面振动速度分布试验数据,利用边界元方法(半仿真)计算车内声辐射.比较两种方法的计算结果,发现200Hz以上声辐射频谱特性吻合良好,证明了利用玻璃边界等效简化模型与Corcos模型作为激励源计算侧窗玻璃振动引起的声辐射有一定程度的适用性.  相似文献   

17.
提出了统计声学能量流(statistical acoustic energy flow,SAEF)方法,将不同物理场的激励耦合后加载到高铁SAEF模型上,计算车外激励与车内声场及车内声腔之间的声能流动,可分析车内全频噪声.首先,采用刚性多体动力学、快速多极边界元和大涡模拟提取了350,km/h下的轮轨力/二系悬挂力、轮轨噪声和空气动力噪声,并且这些激励通过了参考文献试验的验证.其次,搭建了车厢有限元模型,基于多点激励-多点响应技术验证了车厢仿真模态,证明了整体的车厢及区域的铝型材-内饰组合板的精度,间接保证了基于模态特性的组合板隔声量的准确度.最后,搭建了SAEF模型,加载耦合激励并定义组合板隔声性能后,计算了350,km/h下、0~4,000,Hz内的车内噪声.对比车内中心声腔的仿真与试验声压级,结果显示两者的变化趋势基本一致,声压级总值相差2.6,d B(A),符合工程要求,验证了SAEF方法应用于高铁车内全频噪声研究的可行性.  相似文献   

18.
基于统计能量法的汽车风噪传播特性分析   总被引:1,自引:0,他引:1  
以某款实车为研究对象,结合风洞试验、计算流体力学(CFD)和统计能量分析方法(SEA),获取该车在140km·h-1下的外部脉动压力和声场输入,建立较为准确的SEA模型,探索车外空气脉动及其产生的气动噪声向车内的传播特性.研究表明,车内气动噪声主要来自于车窗、前后风挡;车外脉动压力远大于声场,但声场主导中频偏高频车内噪声,脉动压力在中频偏低频作用明显;风挡向车内的声能传播,主要以车外空气脉动激发的振动传递为主.  相似文献   

19.
高速列车噪声是影响车内旅客舒适度和铁路沿线居民生活质量的重要因素,如何有效的降低噪声是高速列车设计者们所关心的问题之一.研究表明,高速列车的车内噪声由透射噪声与结构噪声组成,如何有效的从车内噪声中分离出这两种噪声成分将为列车的减振降噪设计提供一定的指导作用.本文以高速列车实车噪声数据为研究对象,首先运用多种数字信号处理的方法对高速列车噪声数据进行了分析,总结了高速列车噪声的主要特点;然后通过对列车静止时和运行时的噪声透射情形分别进行建模和分析,指出可以利用车体的频响特性作为反映车体隔声性能的声学参数,并提出了一种计算频响特性的简便算法;最后,利用该算法从实车噪声数据中计算出了车体的频响特性,并在此基础上实现了透射噪声与结构噪声的分离.  相似文献   

20.
该研究围绕大型客机气动噪声抑制,探索机舱蒙皮外进行湍流附面层抽吸的机制、以达到降低振源的目的。通过气动噪声舱内传递机理及其控制方法研究,揭示湍流边界层、随机声场、多孔轻质材料内声波耗散、结构振动以及辐射声场之间的耦合作用规律,发展适应未来大型客机舱室安静性环境要求的中低频吸隔声材料和结构,形成典型舱室结构声学材料与结构优化的理论方法,提出舱内噪声控制方法并实验验证,为我国自主研制民用大型客机舱室安静性设计提供理论依据。主要研究内容:探索有限重量和空间等环境约束下提高中低频吸隔声性能的新机理、新途径和新方法,研究湍流边界层、随机声场、多孔轻质材料内声波耗散、结构振动以及辐射声场之间的耦合作用规律和实验验证方法,发展适应未来大型客机舱室安静性环境要求的轻质多孔吸声材料、粘弹性抑振材料和智能吸隔声材料和结构。(1)利用CFD方法建立附面层抽吸理论模型。拟采用CFD与声振动问题联合求解。为减小穿孔板重量,必须考虑其诱发振动的可能性。(2)流体诱发振动和舱内噪声辐射的参数研究。这一部分的研究工作与发动机内的声处理将直接相关。(3)轻质多孔吸声材料研究。开展多孔材料在构型、力学、声学性质方面的表征180科技资讯SCIENCETECHNOLOGY INFORMATION及优化,材料非线性性质以及非线性声场中的响应研究。(4)中低频粘弹性抑振材料和结构研究,结合典型舱室结构,研究粘弹性材料和弹性连接件应用的优化方法。(5)低频智能吸隔声结构研究。围绕舱室的低频噪声控制,研究应用主动或半主动方法提高典型结构低频隔声性能,探索主动或半主动控制单元与传统轻质多孔吸声材料和弹性连接件复合工作的理论和实验方法。(6)大型客机典型结构在随机声场和湍流边界层激励下的辐射噪声的理论、数值和实验方法研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号