首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 102 毫秒
1.
高速列车车头曲面气动噪声的数值预测   总被引:4,自引:1,他引:3  
利用映射法生成高速列车头部流场的六面体贴体网格。采用三维大涡模拟法(LES)计算高速列车流线型头部的瞬态外流场,利用Lighthill-Curle声学比拟理论预测高速列车头部诱发的气动噪声。研究结果表明:气动噪声在很宽的频带内存在,是一种宽频噪声;在低频时,声压幅值较大,随着频率升高,幅值下降;当来流速度一定时,距离气动噪声源越远,总声压级越低,但总声压级的衰减幅度减少;随着列车运行速度增加,诱发的噪声加大,但距离车头曲面越远,总声压级的增幅越小;同一噪声源在不同受声点引起的噪声频谱曲线基本相似,控制列车运行过程中产生的脉动压力,能够减少气动噪声。  相似文献   

2.
摘要:建立某型列车气动噪声计算模型,基于标准湍流模型和大涡模拟(LES)计算车外瞬态流场,用FW-H方程预测了列车远场气动噪声。分别计算了列车整体、车体、受电弓、转向架为噪声源时对外辐射噪声的总声压级和贡献度,并对不同噪声源产生的气动噪声频谱特性进行了分析。计算结果表明:受电弓滑板处具有最大的总声压级,其次在车头和头、尾车转向架处较大;车体和转向架对列车远场噪声贡献度较大,而受电弓对其附近区域噪声贡献度大于远场;车体和转向架噪声主频在400Hz~1250 Hz,而受电弓主频出现在500Hz,且低频噪声幅值很小。列车整体对远场的辐射噪声,与利用车体、受电弓和转向架为噪声源得到的远场噪声叠加相吻合,验证了计算的准确性,对噪声的计算研究有一定的参考价值。  相似文献   

3.
高速列车转向架区域裙板对流场与气动噪声的影响   总被引:2,自引:0,他引:2  
运用声学比拟理论,采用1∶10简化模型对高速列车转向架部位气动噪声进行数值计算,并分析裙板对转向架部位流动与气动噪声性能的影响.基于延迟分离涡模型数值求解Navier-Stokes方程获得近场流场,运用考虑对流效应的Ffowcs Williams-Hawkings方程的声预测程序进行远场声辐射计算.结果表明,由于转向架舱在车体侧墙与底部形成表面不连续结构,流体通过转向架部位时产生了不同尺度和方向的复杂涡结构,上游几何体周围产生的涡向下游传播并与下游几何体相互作用,从而在转向架后端形成高湍流度尾流区.转向架区域外侧安装裙板后,流体与转向架舱的相互作用被削弱.靠近转向架并与车体侧墙平行的可穿透积分面的噪声预测结果显示,裙板可以在较宽频段内有效降低转向架部位的气动噪声.  相似文献   

4.
建立了某高速列车头车-轨道的耦合动力学仿真模型、车身的有限元模型、乘客室的声学边界元模型,计算出了由轨道不平顺引起的乘客室内的噪声分布状况,得出了如下结论:当列车运行速度为200km/h时,乘客室内的A声级在61.9~69.6dBA之间变化;乘客室内A声级较大的场点在40Hz、200Hz频率处的声压级较大;要降低乘客室内的噪声,必须对总声级起决定作用的频率段(40Hz、200Hz)采取措施。针对40Hz的低频噪声,最好在声学贡献最大的面板上采取阻尼降噪措施;针对200Hz的中频噪声,则宜在声学贡献最大的面板上敷设一层在该频率上吸声性能好的吸声材料。  相似文献   

5.
基于有限元-无限元理论,建立某型车辆的有限元模型,并对车辆近场监测点、远程监测面及无限元边界面进行设置,利用直接频响方法对头车、中间车及尾车的关键区域在不同频率下的声场特性进行分析。计算结果表面:头车和尾车区域在低频区段时车体顶部平滑区域的声辐射较小,在车体鼻尖及其下方的转向架区域的声压级较大,其中尾车后方区域内的相比头车的声压级水平和声辐射范围偏大,存在明显的流场影响,但在高频区段时其整体声压级均匀且水平较低。中间车区域在低频区段时受电弓区域的声压级水平很高,尤其在碳滑板和底架处尤为明显,其次在转向架区域的声辐射能力也较大,随着频率的提升,其能量也有显著的衰减。研究结果对高速列车的气动声学设计具有一定的参考价值。  相似文献   

6.
韩斐  周毅 《科学技术与工程》2022,22(34):15103-15114
受电弓作为高速列车主要噪声源之一,是一个包含许多部件的复杂结构。为研究受电弓气动噪声的主要噪声源以及远场气动噪声特性,基于计算流体力学开源软件OpenFOAM,采用大涡模拟结合K-FWH方程的联合方法,探究受电弓在250 km/h、300 km/h和350 km/h等不同速度下运行时的流场及气动噪声特性。通过模拟受电弓在不同速度以及不同开口状态下的运动,得到受电弓的频谱特性以及噪声源分布规律。结果表明,高速列车受电弓引发的远场气动噪声主要是低频和中频噪声,并且噪声频谱具有明显的主频。而远场噪声指向性方面,受电弓产生气动噪声具有偶极子特性,噪声主要向尾流斜上方传播。受电弓不同开口方向,所诱发的噪声声压级并不相同,闭口状态诱发的声压级更大。研究结果能为日后降低高速列车受电弓气动噪声的研究以及工程降噪问题提供理论参考。  相似文献   

7.
高速列车头型近场与远场噪声预测   总被引:4,自引:0,他引:4       下载免费PDF全文
建立了某头型的1∶8缩比三车编组气动噪声仿真模型,采用大涡模拟获得车身湍流脉动压力,基于FW-H方程和声扰动方程分别获得远场噪声和近场噪声,从而建立一整套头型气动噪声预测方法.远场测点总声压级的仿真结果与风洞试验结果相差小于2.0dB(A),频谱变化趋势相同,量级相差较小,表明基于FW-H方程得到远场噪声的可行性.基于声扰动方程能够获得头型关键部位的总声压级,通过对比量级发现,转向架部位总声压级量级远大于其他部位,这与传声器阵列识别结果相吻合,从而验证了声扰动方程获得近场噪声结果.对比头型各部位湍流脉动总压力级和总声压级发现,转向架和排障器量级大于车窗、鼻锥和车体;与湍流脉动总压力级相比,总声压级分布更为均匀,量级更小.  相似文献   

8.
汽车空调气动噪声数值与试验研究   总被引:1,自引:0,他引:1  
通过数值仿真和台架试验相结合的方法开展某车型空调系统气动噪声研究.研究发现,精细网格和大涡模拟方法能够获得高精度的出风口风量分配结果,它们与试验最大偏差为4.35%,最小偏差为0.93%.与此同时,空间流线的紊乱和当地速度的大小直接影响其表面总声压级的大小,对于计算的空调系统,风机是主要噪声源,改善风机流动分离,降低风机噪声是空调系统降噪的关键.可穿透面的声辐射方法有效地考虑到表面压力脉动的偶极子噪声和空间涡流的四极子噪声,是汽车空调气动噪声计算中声辐射的有效处理方法.利用该方法得到的测点总声压级与试验值更加接近,约相差2dBA,频谱变化趋势和数值基本一致,推荐作为后续空调气动噪声仿真的声辐射处理方法.  相似文献   

9.
公路隧道内主动降噪声源布置位置仿真模拟   总被引:1,自引:0,他引:1  
基于声波干涉原理对高速公路隧道内噪声的主动降噪特性进行了理论分析,采用有限元法建立了3条隧道全尺寸断面模型,计算得出隧道内声压级分布,分析了主动降噪时的隧道内声场特性.考虑噪声声源频率的差异,噪声频率越低,隧道内主动降噪效果越好;考虑主动降噪设备位置的不同,将主动声源与噪声源、降噪点的空间距离加和,再与噪声源与降噪点的空间距离作比较,若两者差值为噪声波长的整数倍,则可在降噪点附近实现3dB以上区域降噪.  相似文献   

10.
针对叶片尾缘穿孔对气动及噪声特性的影响,基于NACA65019叶片,在雷诺数Re=2×105条件下,采用大涡模拟和FW-H方法研究孔型和倾斜角对叶片气动特性、绕流流场和噪声特性的影响规律,并选择降噪效果较好的穿孔模型应用到小型轴流风机上,对穿孔风机进行试验。结果表明:当穿孔倾斜角为30°时,在一定攻角范围内(α≤10°),圆柱型穿孔叶片气动性能最接近原始叶片,并且该穿孔叶片总声压级降低可达9 dB。这是由于穿孔叶片有效抑制了涡量沿叶片表面法向的发展,加速了尾缘涡沿流动方向的能量衰减,且穿孔形成的射流使大尺度的涡破碎形成小尺度的涡,衰减波动力,降低了气动噪声。  相似文献   

11.
高速列车转向架舱对转向架区域流场与气动噪声影响   总被引:1,自引:0,他引:1  
根据涡声理论和声比拟方法,数值模拟了高速列车转向架简化模型的流场与气动噪声特性,分析了转向架舱对转向架流动与气动噪声性能的影响.结果表明:在单独转向架与转向架位于转向架舱内2种工况下,几何体近壁流场内形成的体偶极子声源为近场四极子噪声的主要声源,转向架表面压力脉动产生的面偶极子声源为声辐射主要声源;与单独转向架相比,转向架舱改变了转向架流动特性与声辐射指向性,削弱了转向架所产生气动噪声的强度,但转向架舱后壁会产生较大气动噪声.  相似文献   

12.
针对高速列车外流场气动噪声完成了在线实验测试研究,对列车模型进行了简化并确定了合理性;进行了列车模型湍流流场模拟,完成了列车远场气动噪声的预测研究.研究表明,合理缩短列车不会改变车身表面声功率分布规律;高速列车气动噪声属于宽频带噪声;在频率范围(0~ 5000Hz)内气动噪声仿真与实验结果吻合较好,说明仿真方法准确度高;列车转向架处湍流最为剧烈,其次为车头鼻锥处;车身表面的气流最为平缓,进一步说明缩短列车模型的合理性.所提出的仿真方法能够为高速列车的结构优化设计提供依据,并能验证高速列车气动噪声控制方法的有效性.  相似文献   

13.
CRH3型高速列车气动噪声数值模拟研究   总被引:4,自引:0,他引:4  
采用非线性声学求解方法(NLAS)进行近场气动噪声研究, 通过一个二维后台阶算例进行了方法验证, 与实验数据符合良好。在噪声源周围建立噪声面, 并利用FW-H方程进行远场噪声评估。对CRH3型高速列车在300 km/h速度下运行进行了气动噪声分析, 着重考虑车体几何对气动噪声的影响。首先对高速列车在RANS计算下的统计结果进行分析, 研究高速列车关键部位如头部、车厢连接处、尾部等的流场特征。进而通过在列车表面特征位置设置测点, 研究车体不同部位对气动噪声产生的贡献。通过在远场设置噪声测点, 分析了CRH3型高速列车的远场气动噪声特性, 并对噪声水平进行了评估。  相似文献   

14.
高速列车受电弓气动噪声特性分析   总被引:1,自引:0,他引:1  
以某高速列车受电弓为研究对象, 探讨其在350 km/h速度下的气动噪声特性。采用延迟脱体涡模拟(DDES)和声学有限元(FEM)相结合的方法, 分析带导流罩受电弓在升起和下降状态下, 近场和远场气动噪声空间分布规律和频谱特性, 研究流场计算时不同建模方式对诱发噪声幅值和指向性的影响以及壁板的反射和散射作用对噪声频谱特性的影响。结果表明: 1) 在本文选取的受电弓外形和开口方向下, 降弓和导流罩诱发噪声略大于升弓和导流罩诱发噪声; 2) 导流罩在低于300 Hz的低频区诱发噪声比例较大, 而受电弓在300 Hz后诱发噪声影响较大; 导流罩诱发噪声在升弓情形时所占比例相对较大; 3) 在指向性上, 导流罩诱发噪声在受电弓前部贡献较大, 受电弓诱发噪声在后部区域贡献较大; 在列车正上方区域, 弓体诱发噪声大于导流罩诱发噪声, 是主要的气动噪声源。  相似文献   

15.
为了减少翼型的气动噪声,采用声类比的方法,以NACA0018翼型为研究对象,研究脊状结构对翼型远场噪声的影响。分别模拟来流速度为12 m/s和24 m/s,在6°攻角下布置脊状结构的翼型流场,对应的基于弦长雷诺数大约为1.6×105。通过FW-H方程计算大涡模拟提取的声源项,得到Riblet-Q和Riblet-H翼型的声场。非定常流场计算结果表明:6°攻角下Riblet-H翼型能够改善翼型边界层分离情况,抑制涡结构脱落,从而减小翼型表面压力脉动和接收点处声压波动。逆压梯度段脊状结构可以有效减小频率在0-3000Hz内的噪声。进一步研究表明,该状态下的噪声主要由边界层引起的涡脱落噪声所主导。可见,适当位置的脊状结构可以改善翼型的噪声情况。  相似文献   

16.
基于面板声功率贡献量分析的齿轮箱噪声控制方法研究   总被引:1,自引:0,他引:1  
在对当前面板声学贡献量分析方法研究的基础上,提出了面板声功率贡献量分析方法.针对齿轮箱辐射噪声,利用有限元和边界元理论建立齿轮箱的计算模型,对其进行噪声辐射模拟计算.根据齿轮箱的面板区域划分,计算齿轮箱的面板声功率贡献量,从而确定齿轮箱辐射声功率的主要贡献区域,同时确立噪声峰值对应频率的主要贡献区域,并对齿轮箱进行结构改进与验证分析.结果表明,此方法有利于齿轮箱噪声控制的研究与实现.  相似文献   

17.
通过模拟计算QD58型往复式冰箱压缩机的声学特性,指出压缩机噪声最大峰值与其内部气体共鸣音直接有关.运用移频降噪理论,改变压缩机内气体的声学固有频率,降低共鸣音.实测了空气介质下压缩机内腔安装隔板后的移频降噪数据.并用电一声类比法推导的压缩机内气体的声学固有频率对隔板各个几何参数的灵敏度公式,调整实际工作状态下隔板的几何参数,模拟计算了压缩机内部气体声学固有频率的变化.  相似文献   

18.
以某型高速列车为研究对象,基于线路运行类比测试,对车辆运行时主要噪声源之一的转向架区噪声开展研究。通过对不同转向架区噪声进行类比测试和对比分析,确定了350km·h-1及以下速度等级中间车拖车转向架区的主要噪声源为轮轨噪声,头、尾拖车转向架区主要噪声源为气动噪声,中间车动车转向架区主要噪声源为牵引系统噪声。基于以上的分析结论和一定的假设,对车头、车尾和中间动车转向架区主要噪声源进行了分离特性研究,获取了主要噪声源的频谱和贡献特性。研究结果可为高速列车减振降噪设计提供依据和指导。  相似文献   

19.
考察了乘客流量、车站公共广播等因素对广州地铁一、二号线的车站环境噪声和列车车厢内部噪声的影响,探讨了车站环境噪声的日变化趋势。结果表明:地铁列车高速运行是地铁车站环境噪声的主要噪声源,地铁车站环境噪声还与车站的广播次数、广播音量、客流量、车流量等因素有关;地铁列车车厢内噪声除了与地铁线路质量、列车运行速度及地铁列车结构有关外,还与车厢内广播次数、广播音量有密切联系;屏蔽门能有效降低噪声;地铁噪声的频率特性是以中高频噪声为主,属宽频带噪声。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号