首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用膨胀珍珠岩吸附月桂醇制备复合相变材料。为了探究吸附时间和吸附温度对其吸附率的影响,以及吸附月桂醇的含量对复合相变材料稳定性的影响,通过吸附率测定试验选定适宜的吸附时间和吸附温度;并制备十组不同月桂醇含量的复合相变材料,通过渗漏性试验研究复合相变材料的稳定性。结果表明,膨胀珍珠岩吸附月桂醇的适宜吸附时间为4 h,适宜吸附温度为50℃;月桂醇膨胀珍珠岩复合相变材料的设计含量为40%时,膨胀珍珠岩对月桂醇的吸附情况和复合相变材料的稳定性的综合效果较好,对应质量吸附率为65.83%。  相似文献   

2.
为解决相变材料用于沥青混合料热稳定性与力学性能不足的问题,采用环氧树脂与十五烷定形封装相变材料制备新型环氧树脂复合相变材料,并采用等体积替换法将其用于沥青混合料中。采用差示扫描量热仪(DSC)、热重分析仪(TG)与导热系数仪进行环氧树脂复合相变材料相变与热物特性测试分析;通过相变沥青混合料温度调控试验分析其调温性能与效果,并对相变沥青混合料路用性能进行验证。研究结果表明:环氧树脂复合相变材料相变焓值可达60 J/g以上,在180℃以内几乎不发生热损失,储热密度高、热稳定性良好;相变区间内表观比热容显著增大,升、降温过程中最大值分别为10.9和6.7 J/(g·℃);相变材料掺量(质量分数)越大温度调控效果越好;调温性能与混合料位置相关,相变沥青混合料最大调温温差和最大温度变化速率降低值随深度增大而增大;各掺量下相变沥青混合料均具有显著的调温效果,掺量小于4%时相变沥青混合料均可满足路用性能要求。  相似文献   

3.
环氧树脂/ZrW2O8封装材料的制备及其性能   总被引:4,自引:0,他引:4  
将负热膨胀材料ZrW2O8粉体按一定质量比例与E-51环氧树脂混合,制备电子封装材料.测定了不同比例下封装材料的线膨胀系数、玻璃化温度、抗拉与弯曲强度、吸湿率和耐腐蚀性能.研究结果表明:采用超声波处理,可使ZrW2O8粉体均匀分散在环氧树脂E-51基体中.随着ZrW2O8质量分数的增加,封装材料的线膨胀系数下降,玻璃化温度升高,拉伸、弯曲强度与抗吸湿性提高;当ω(E-51)∶ω(ZrW2O8)=3∶2时,封装材料的耐酸性腐蚀较好,而耐碱性腐蚀的能力较差.  相似文献   

4.
采用真空吸附法将液态的癸酸-硬脂酸(CA-SA)二元共晶相变材料封装入多孔膨胀珍珠岩(EP)中,制备颗粒定型复合相变材料CA-SA/EP,并以石膏为无机基体研制储能墙板。采用傅里叶红外光谱仪(FT-IR)、扫描电子显微镜(SEM)、差示扫描量热仪(DSC)、多路温度测试仪和热扩散系数测试仪表征材料的性能。结果表明:以质量比4∶1的CA-SA二元共晶相变材料在EP复合相变材料中的最佳吸附质量分数为75%,且在EP的多孔网络结构中均匀分布,复合过程中CA-SA二元共晶相变材料与EP间不发生化学反应,没有新产物形成;CA-SA/EP颗粒定型复合相变材料的相变温度和相变潜热分别为20.7℃和120.4 J/g,500次热循环后,颗粒定型复合相变材料的热性能基本不变。  相似文献   

5.
文章以小麦秸秆为原料,通过添加不同比例的凹凸棒石和针铁矿以提高木质陶瓷的力学性能和磁选性能,添加少量的环氧树脂作为黏结剂,按照不同质量配比混合均匀后,热压成型,在不同温度(600、700、800、900、1 000℃)和氮气保护气氛下焙烧,同步完成生物质碳化、凹凸棒石热活化、针铁矿的还原,获得了基于纳米矿物的新型木质陶瓷。对不同配比的复合材料的气孔率、比表面积、残炭率等性能进行了测试和分析;重点研究了在相同条件下(包括溶液量、浓度、吸附时间、振荡速度、固液比等),利用该木质陶瓷对含磷废水进行的吸附试验。结果表明,在900℃下烧结的的木质陶瓷(m(麦秸)∶m(凹凸棒石)∶m(针铁矿石)=3∶1∶1)对废水中磷的吸附效果最佳,去除率达98.04%。  相似文献   

6.
以研制粒状钙离子吸附剂为目的,采用吸附材料与粘结剂、增孔剂、水等辅助物料混合的方法,进行了粘结剂筛选和粒状吸附剂的制备试验。结果表明:以13X沸石为吸附材料,凹凸棒土为粘结剂;按照沸石、凹凸棒土、精煤粉15∶4∶1的配比,煅烧温度为650℃制得的粒状吸附剂性能最优;钙离子吸附量达到30.81 mg/g,损失率为1.76%;缩小吸附剂粒径、吸附速率增大;延长吸附时间,吸附量增加,120 m in时基本达到饱和。  相似文献   

7.
对相变材料在墙体中的封装方式(直接混合、宏观封装、微观封装和定形相变材料封装)、相变材料的种类和物性等方面的研究进行了归纳总结.从实验和模拟2个方面,对相变材料位于墙体表面和墙体内部影响室内环境和建筑能耗的研究进行了综述和评价.分析表明,微观封装和定形相变材料的封装效果较好;墙体用相变材料的相变温度一般在20~30℃范围内;相变材料层在墙体中的安装位置可分为墙体表面和墙体内部2种,但相变材料层在墙体内的最优位置并不固定,受相变材料物性、墙体材料以及室内外环境工况的影响.通过相变材料与墙体合理高效的结合,可充分发挥相变材料的高蓄热特性,提高墙体的热性能,达到调节室内环境温度、降低建筑能耗的目的.  相似文献   

8.
凹凸棒石改性麦秸木质陶瓷的制备及其对苯酚的吸附效果   总被引:1,自引:0,他引:1  
文章以麦秸和凹凸棒石为原料,以酚醛树脂为黏结剂,按照不同质量配比混合,在100~150℃、6MPa下热压40min后,在一定温度下烧结制备凹凸棒石改性麦秸木质陶瓷,并利用该木质陶瓷对含酚废水进行吸附试验。结果表明,在900℃下烧结的凹凸棒石改性麦秸木质陶瓷(m(麦秸)∶m(凹凸棒石)=5∶1)对苯酚的吸附效果最佳,吸附率达97.8%;当50mL、50mg/L苯酚溶液中木质陶瓷的投加量为0.5g,振荡时间为60min,溶液温度为25℃时,该木质陶瓷对苯酚的吸附效果最佳,吸附率达98.12%,且其吸附率随着溶液pH值和苯酚起始质量浓度的增加而减小。由此可见,凹凸棒石改性麦秸木质陶瓷对苯酚的吸附效果受材料配比、烧结温度、陶瓷投加量及振荡时间等因素的影响。  相似文献   

9.
氯化锌法制备山核桃壳-玉米秸秆混合基活性炭   总被引:1,自引:1,他引:0  
以玉米秸秆和山核桃壳为原料,采用氯化锌法制备混合基生物质活性炭。考察了两种生物质材料的配比、氯化锌用量、活化温度和活化时间对活性炭性能的影响,确定其最佳制备条件为:玉米秸秆与山核桃壳质量比为3∶7;氯化锌用量为25 g(每10 g生物质);活化温度为700℃;活化时间为1 h。上述条件制备的活性炭碘值为1 079.72 mg·g~(-1),亚甲基蓝值为208.54 mg·g~(-1),达到了国家优质活性炭标准。其比表面积BET为1 269.33 m2·g~(-1),孔径以中孔为主。利用所制备的活性炭对染料孔雀石绿和金橙Ⅱ进行了吸附实验,发现活性炭对这两种染料的吸附率可达93%,吸附过程符合伪二阶吸附动力学模型和Freundlich吸附热力学模型。  相似文献   

10.
以工业石蜡为相变芯材,通过真空吸附法和硅酸钙外壳封装法制备石蜡/膨胀珍珠岩复合相变材料和复合相变储能砂浆.利用SEM和差示扫描量热法分析了石蜡/膨胀珍珠岩相变材料的形貌和蓄热能力,测试了复合相变储能砂浆的抗压强度、干表观密度、导热系数和三维条件下材料温度时间响应关系.结果表明,经硅酸钙外壳封装后石蜡/膨胀珍珠岩相变材料中石蜡的含量约为55.47%时,相变温度和相变潜热分别为35.59℃和96.77J/g;复合相变储能砂浆的28d抗压强度,干表观密度和导热系数分别为8.0MPa,1 678kg/m~3和0.46W·m~(-1)·K~(-1),在外界温度变化时,复合相变储能砂浆相对于传统砂浆材料具有升温和降温速度变化平缓,可用作保温砂浆.  相似文献   

11.
活性炭材料的孔径结构对SO_2吸附性能的影响   总被引:1,自引:0,他引:1  
为了研究在常温下活性炭材料孔径结构及材料形态对SO2吸附性能的影响,以5种不同孔径结构的沥青基活性炭纤维及活性炭颗粒为材料,通过吸附动力学模型的拟合,考查了活性炭孔径结构及材料形态与SO2吸附速率的关系.结果表明:较小的微孔径结构更有利于SO2的吸附;不同孔径结构的活性炭材料对SO2的吸附均符合Bangham动力学过程,活性炭纤维的吸附速率随孔径的增大而增大;活性炭颗粒因其形态结构的差异,吸附速度较活性炭纤维慢,吸附效果相对较差.  相似文献   

12.
用4, 4′-二氨基二苯基砜(DDS)做固化剂,采用聚酰胺酸(PAA)对环氧树脂(EP)进行改性,研究了PAA用量、固化剂用量和反应时间对环氧树脂耐热性的影响,采用TG测定不同配比、预反应时间及不同固化温度下改性EP的耐热性,利用SEM对最佳配比固化后样品的表面和断面形貌进行了分析.结果表明,改性树脂最佳固化工艺条件为:120 ℃,1 h→150 ℃,1 h→170 ℃,2 h→200 ℃,2 h→250 ℃,2 h;改性树脂配比为mEP∶mPAA∶mDDS=1∶0.75∶0.08;预反应时间3 h,改性EP的热分解温度为411 ℃,比未改姓EP提高了近80 ℃以上;EP/PAA/DDS固化后样品无明显的两相结构,树脂的相容性较好.  相似文献   

13.
针对在建筑围护结构中使用单一相变材料(phase change material, PCM)不能满足全年节能和舒适度要求的问题,提出将两种不同相变温度的PCM同时填入到多层平壁墙体中,构成双层PCM墙体.采用显热容法对PCM的传热过程进行分析,对数学模型采用有限差分法离散,利用MATLAB软件编程对多种不同结构的双层PCM墙体在典型夏热冬冷地区气候条件下热工性能进行了计算分析.通过衰减倍数,先探索理论上的PCM最佳相变温区,再从实际建筑围护结构使用的PCM中选取热物性参数与理论上最佳值最接近的PCM,将该PCM墙体热工性能与理想的PCM墙体热工性能相比较,结果相差不大.研究表明:两种PCM层位于墙体中间位置时,衰减倍数最大,建筑围护结构内表面温度最稳定,低相变温度PCM在冬季的利用率和高相变温度PCM在夏季的利用率均为0~100%,能够使墙体保持较高的热工性能.  相似文献   

14.
针对轻质建筑围护结构材料降低了围护结构热容的问题,采用合理利用相变材料(PCM)的相变潜热的方式,以提高建筑围护结构的热容.阐述了国内外学者对PCM物性特征的研究成果,对比分析了PCM的热性能与传统保温材料的不同之处.同时,研究了目前对轻质PCM建筑构件的节能研究进展与热工评价指标,并基于当地的实际气象条件、室内目标温度、围护结构组成等情况,考虑PCM应具有相匹配的相变温度、相变潜热、导热系数等因素,提出了实际工程中选取PCM的思路,以及如何科学合理地发挥轻质围护结构中PCM的热性能,包括PCM在具有不同配置的墙体中的合理位置与用量等.  相似文献   

15.
具有较大比表面积的且以微孔孔隙居多的活性炭对气体小分子具有较好的吸附性能,以椰壳活性炭为原料、KOH/NaOH为活化扩孔剂,考察了温度、时间以及KOH与NaOH的质量比对活性炭孔隙结构的影响,使用N2在77 K下对产品活性炭进行表征测试。表征结果表明,当m(KHO)∶m(NaOH)为4∶1、溶液浓度为50%时,活性炭在600℃下活化4 h所得的活性炭产品平均孔径最大。对比HK模型和DFT模型对微孔活性炭孔径分布的分析结果,表明DFT模型更符合实际情况。经过孔结构改性的活性炭对CH4与CO2吸附能力均有提高。  相似文献   

16.
以林业废弃物杨木屑为原料,采用正交试验法探讨以磷酸为主活化剂,浓硫酸为辅助活化剂,在不同工艺条件下制备活性炭,测定其亚甲基蓝脱色力和碘的吸附值,考虑活化因素对活性炭得率和吸附性能的影响,确定最佳工艺参数.试验结果表明:磷酸-硫酸活化法制备木屑活性炭的最佳工艺条件为浸渍比1∶2.5,浸渍浓度60%,活化时间90 min,活化温度550℃.  相似文献   

17.
笔者以城市剩余污泥和花生壳为原料,通过化学活化和高温热解的方法,制备出污泥、污泥-花生壳吸附剂并对其吸附性能进行了研究﹒通过单因素实验,考察了不同活化温度、活化时间、活化剂浓度、浸渍比、原料配比等因素对活性炭吸附性能的影响,确定出污泥制备活性炭吸附剂的最佳工艺参数﹒正交试验结果表明:ZnCl_2浓度为5 mol/L、温度为500℃、活化时间为2 h、浸渍比为1︰1、原料配比为2︰1时,制得的活性炭吸附性能最佳,碘吸附值为781.05 mg/g,吸附剂产率为14.35%﹒与污泥吸附剂相比各项性能有明显提升﹒  相似文献   

18.
选择月桂酸(LA)、肉豆蔻酸(MA)、棕榈酸(PA)作为储能材料制备三元脂肪酸低共熔物(LA-MA-PA),利用理论估算公式得到LA-MA-PA的组成比例和热性能参数。采用真空吸附法将不同质量的液态LA-MA-PA封装于膨胀珍珠岩(EP)的孔隙内制备出月桂酸-肉豆蔻酸-棕榈酸/膨胀珍珠岩复合相变材料(LA-MA-PA/EP),然后利用渗出圈法确定膨胀珍珠岩对于三元脂肪酸的最大担载量。通过扫描电子显微镜(SEM)、傅里叶变换红外光谱仪(FT-IR)、热分析仪(TG)和差示扫描量热仪(DSC)等对LA-MA-PA/EP的微观结构、化学稳定性、热稳定性和热性能进行了表征。结果表明:复合相变材料中LA-MA-PA和EP质量比为2∶1时达到最大负载量,且脂肪酸能均匀密实地分布于EP的孔隙中;EP担载材料与相变材料LA-MA-PA之间无化学反应;LA-MA-PA/EP的相变温度和相变潜热分别为30.4℃和103.6 J/g,适合应用于夏季炎热地区的建筑领域;将LA-MA-PA/EP应用于建筑围护结构中,在其工作温度领域质量损失率低,具有较好的热稳定性。  相似文献   

19.
采用一维焓法模型分析了含相变材料(PCM)墙体中PCM的相变温度与墙体所处的热环境的关系对墙体热性能的影响特性,得到可显著提高该种墙体热性能的规律.首先,PCM发生完整的熔化与凝固过程、且在相变结束时留有少量未熔化或未凝固的PCM,是含PCM墙体达到较高热工性能的保证;其次,墙体所处环境温区的中心温度与PCM相变中心温度相等,是墙体中PCM能否发挥出蓄能性能的基本条件,二者的少许持续性偏离都会造成PCM的效果大打折扣;另外,墙体中PCM利用率越低,对周围温度波动的控制能力越强,PCM墙体的热工性能越好.  相似文献   

20.
在室内模拟条件下研究了废水pH值、温度、活性炭粒径大小、固液比以及吸附时间等因素对玉米秸秆活性炭去除废水COD的影响.结果表明:在试验设定的条件下,废水为中性时有利于活性炭对COD的吸附,且活性炭粒径越小,环境温度越高,吸附时间越长,固液比值越大,废水COD的去除率越高.玉米秸秆活性炭去除废水COD的最佳条件为:废水pH值为7.0,温度为30℃,活性炭粒径为120目,固液比为2 g/100 mL,振荡吸附时间为60 min时,COD的去除率为78.4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号